Tính giá trị của tích P = ln ( c o t 1 ∘ ) ln ( c o t 2 ∘ ) . . . ln ( c o t 89 ∘ )
A. 1
B. 1 45
C. 0
D. -1
Tính giá trị của biểu thức P = ln ( 2 cos 1 0 ) . ln ( 2 cos 2 0 ) . ln ( 2 cos 3 0 ) . . . ln ( 2 cos 89 0 ) với tích đã cho bao gồm 89 thừa số có dạng ln ( 2 cos a 0 ) với 1 ≤ a ≤ 89 và a ∈ Z
A. P = -1
B. P = 0
C. P = 1
D. P = 2 89 89 !
Cho ln x= 2. Tính giá trị của biểu thức T = a ln e x - ln e 2 x + ln 3 . log 3 e x 2
A. T = 21
B . T =12
C . T = 13
D. T =7
Tính giá trị của biểu thức
P = ln ( tan 1 0 ) + ln ( tan 2 0 ) + ln ( tan 3 0 ) + . . . + ln ( tan 89 0 ) .
Tính giá trị bằng số của biểu thức ln(1/e)
A. 1 B. -1
C. 1/e D. -1/e
Tính giá trị bằng số của biểu thức ln(1/e)
A. 1 B. -1
C. 1/e D. -1/e
a) Sử dụng giới hạn \(\mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\) và đẳng thức \(\ln \left( {x + h} \right) - \ln x = \ln \left( {\frac{{x + h}}{x}} \right) = \ln \left( {1 + \frac{h}{x}} \right),\) tính đạo hàm của hàm số \(y = \ln x\) tại điểm x > 0 bằng định nghĩa.
b) Sử dụng đẳng thức \({\log _a}x = \frac{{\ln x}}{{\ln a}}\,\,\left( {0 < a \ne 1} \right),\) hãy tính đạo hàm của hàm số \(y = {\log _a}x.\)
a) Với x > 0 bất kì và \(h = x - {x_0}\) ta có
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{x_0} + h} \right) - \ln {x_0}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}.{x_0}}} = \mathop {\lim }\limits_{h \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}}} = \frac{1}{{{x_0}}}\end{array}\)
Vậy hàm số \(y = \ln x\) có đạo hàm là hàm số \(y' = \frac{1}{x}\)
b) Ta có \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) nên \(\left( {{{\log }_a}x} \right)' = \left( {\frac{{\ln x}}{{\ln a}}} \right)' = \frac{1}{{x\ln a}}\)
Với giá trị nào của m thì biểu thức T = 34 + ln( 4m - x) xác định với mọi x ∈ - ∞ ; - 1 ?
A. m > -4
B. m > -1/4
C. m < -4
D. m < -1/4
Chọn B.
Biểu thức T xác định khi và chỉ khi 4m – x > 0 hay x < 4m.
Để T xác định với mọi
Cho x, y là các số thực dương thỏa mãn ln x + ln y ≥ ln x 2 + y . Tính giá trị nhỏ nhất của P = x + y.
Đáp án B
Ta có ln x y = ln x + ln y ≥ ln x 2 + y
⇔ x y ≥ x 2 + y ⇔ y x - 1 ≥ x 2
Vì x = 1 không thỏa và y > 0 => x > 1
⇒ P = x y ≥ x 2 x - 1 + x = f x
X é t h à m s ố f x = x 2 x - 1 + x v ớ i x > 1
⇒ f ' x = x 2 - 2 x x - 1 2 + x = 2 x 2 - 4 x + 1 x - 1 2
⇒ f ' x = 0 ⇔ x = 2 + 2 2 v ì x > 1
Dựa vào bảng biến thiên của hàm số f(x) suy ra
⇒ M i n P = M i n x > 1 f x = f 1 = 3 + 2 2 .
Cho ∫ 0 3 x 2 x + 1 + 4 d x = a 3 + ln ( 3 b 2 c ) Tính T=a+2b-c