Tính rồi rút gọn
a, 1 + 3 6 =
b, 18 4 - 2 =
c, 3 4 × 4 6 =
d, 3 5 : 4 6 =
tính rồi rút gọn
a)2-1/4
b)7/9-4/9
c)15/21-4/7
a: =8/4-1/4=7/4
b: =3/9=1/3
c: =5/7-4/7=1/7
a,\(\dfrac{7}{4}\)
b,\(\dfrac{1}{3}\)
c,\(\dfrac{1}{7}\)
Rút gọn
a) \(\dfrac{x^5-2x^4+2x^3-4x^2-3x+6}{x+4}\)
b) \(\dfrac{x^4-4x^2+3}{x^4+6x^2-7}\)
c) \(\dfrac{x^4+x^3-x-1}{x^4+x^3+2x^2+x+1}\)
\(a,=\dfrac{x^4\left(x-2\right)+2x^2\left(x-2\right)-3\left(x-2\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4+2x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4-x^2+3x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x-1\right)\left(x^2+3\right)}{x+4}\)
\(b,=\dfrac{x^4-3x^2-x^2+3}{x^4-x^2+7x^2-7}=\dfrac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\dfrac{x^2-3}{x^2+7}\\ c,=\dfrac{\left(x^3-1\right)\left(x+1\right)}{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}\\ =\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)}{\left(x^2+1\right)\left(x^2+x+1\right)}=\dfrac{x^2-1}{x^2+1}\)
Rút gọn rồi tính
A.4/5+3/15 B.2/3+32/24 C.5/6+15/18
a) \(\dfrac{4}{5}+\dfrac{3}{15}=\dfrac{4}{5}+\dfrac{1}{5}=\dfrac{5}{5}=1\)
b) \(\dfrac{2}{3}+\dfrac{32}{24}=\dfrac{2}{3}+\dfrac{4}{3}=\dfrac{6}{3}=2\)
c) \(\dfrac{5}{6}+\dfrac{15}{18}=\dfrac{5}{6}+\dfrac{5}{6}=\dfrac{10}{6}=\dfrac{5}{3}\).
1 Rút gọn rồi tính
a 2/8+5/6=
b 1/4+6/30=
c 1/8+12/16=
d 12/18+4/3
2/ tính tổng
a 1/3+1/6+1/18
b 1/12+1/6+3/4
c 1/20+1/4+2/5
d 2/3+4/5+7/15
1.
a, Ta có 28=14⇒14+56=1312(Bn tự quy đồng lên nhé !)
b,Ta có1216=34⇒18+34=78(Bn tự quy đồng lên nhé !)
c,Ta có636=16⇒14+16=512(Bn tự quy đồng lên nhé !)
d,Ta có1218=23⇒23+14=1112(Bn tự quy đồng lên nhé !)
7.Phần này mk chỉ cho đáp án thuia.67 ;
b,420=15 ;
c,615 ;
d,129
Bài 1. Rút gọn
a. \(2\sqrt{8}-3\sqrt{18}+\sqrt{32}\)
b. \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(1+\sqrt{2}\right)^2}\)
c. \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
d. \(\sqrt{2-\sqrt{3}+\sqrt{2+\sqrt{3}}}\)
Bài 2. Giải phương trình
a. \(x\sqrt{8}-6\sqrt{2}=0\)
b. \(\sqrt{2x+1}-3=0\)
c. \(\sqrt{x^2-4x+4}-3=0\)
d. \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25+2}=0\)
a) Ta có: \(2\sqrt{8}-3\sqrt{18}+\sqrt{32}\)
\(=4\sqrt{2}-6\sqrt{2}+4\sqrt{2}\)
\(=2\sqrt{2}\)
b) Ta có: \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(1+\sqrt{2}\right)^2}\)
\(=\sqrt{2}-1+\sqrt{2}+1\)
\(=2\sqrt{2}\)
c) Ta có: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=2-\sqrt{3}+\sqrt{3}-1\)
=1
a) Ta có: 2√8−3√18+√3228−318+32
=4√2−6√2+4√2=42−62+42
=2√2=22
b) Ta có: √(1−√2)2+√(1+√2)2(1−2)2+(1+2)2
=√2−1+√2+1=2−1+2+1
=2√2
3. Rút gọn rồi tính: A) 5/10 - 2/15. B) 5/20 - 1/6. C) 6/18 - 6/24. D) 5/9 - 3/12.
A) \(\dfrac{5}{10}-\dfrac{2}{15}\)
\(=\dfrac{1}{2}-\dfrac{2}{15}\)
\(=\dfrac{15}{30}-\dfrac{4}{30}\)
\(=\dfrac{11}{30}\)
B)\(\dfrac{5}{20}-\dfrac{1}{6}\)
\(=\dfrac{1}{4}-\dfrac{1}{6}\)
\(=\dfrac{6}{24}-\dfrac{4}{24}\)
\(=\dfrac{2}{24}=\dfrac{1}{12}\)
C) \(\dfrac{6}{18}-\dfrac{6}{24}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}\)
\(=\dfrac{4}{12}-\dfrac{3}{12}\)
\(=\dfrac{1}{12}\)
D) \(\dfrac{5}{9}-\dfrac{3}{12}\)
\(=\dfrac{5}{9}-\dfrac{1}{4}\)
\(=\dfrac{20}{36}-\dfrac{9}{36}\)
\(=\dfrac{11}{36}\).
a: =1/2-2/15
=15/30-4/30
=11/30
b: =1/4-1/6
=3/12-2/12
=1/12
c: =1/3-1/4
=1/12
d: =20/36-9/36
=11/36
1. Rút Gọn
a)√6-2√5
b)√8+2√7
2 Tính
a) √(√10-3)2 -√10
b)√(5+√7)2 - √8-2√7
\(1,\)
\(a,\sqrt{6-2\sqrt{5}}=\sqrt{\sqrt{5^2}-2.\sqrt{5}.1+1}=\sqrt{\left(\sqrt{5}-1\right)^2}=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)
\(b,\sqrt{8+2\sqrt{7}}=\sqrt{\sqrt{7^2}+2.\sqrt{7}.1+1}=\sqrt{\left(\sqrt{7}+1\right)^2}=\left|\sqrt{7}+1\right|=\sqrt{7}+1\)
\(2,\)
\(a,\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{10}\)
\(=\left|\sqrt{10}-3\right|-\sqrt{10}\)
\(=\sqrt{10}-\sqrt{10}-3\)
\(=-3\)
\(b,\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{8-2\sqrt{7}}\)
\(=\left|5+\sqrt{7}\right|-\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=5+\sqrt{7}-\left|\sqrt{7}-1\right|\)
\(=5+\sqrt{7}-\sqrt{7}+1\)
\(=6\)
bài 1: rút gọn bthuc
a.\(\dfrac{a+\sqrt{a}}{\sqrt{a}}\) b.\(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}\)
b2: rút gọn
a.\(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}\) b.4-x-\(\sqrt{4-4x+x^2}\) c.\(\sqrt{4x^2-4x\text{x^2 +2*x-3 >0}}-\sqrt{4x^2+4x+1}\)
Bài 1:
a) \(\dfrac{a+\sqrt{a}}{\sqrt{a}}=\sqrt{a}+1\)
b) \(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}=\dfrac{\left|x-3\right|}{3-x}=\pm1\)
Bài 2:
a) \(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}=\pm\dfrac{1}{3x+1}\)
b) \(4-x-\sqrt{x^2-4x+4}=4-x-\left|x-2\right|=\left[{}\begin{matrix}6-2x\left(x\ge2\right)\\2\left(x< 2\right)\end{matrix}\right.\)
rút gọn
a) A=\(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
b) B=\(\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c) C=\(\left(\sqrt{3}+\sqrt{5}\right)\times\sqrt{7-2\sqrt{10}}\)
lm nhanh giúp mk nhé
a) \(A=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}-\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+-\sqrt{3}-1=-2\)
b) \(B=\sqrt{11-6\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{3^2-2.3.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}\)
\(=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\left|3-\sqrt{2}\right|-\left|\sqrt{2}-1\right|\)
\(=3-\sqrt{2}-\sqrt{2}+1=4-2\sqrt{2}\)
c) \(C=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\left(\sqrt{5}+\sqrt{3}\right)\left|\sqrt{5}-\sqrt{2}\right|\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{2}\right)=5-\sqrt{10}+\sqrt{15}-\sqrt{6}\)
Bài 1 Rút gọn
a) \(\dfrac{2}{5}\sqrt{75}-0,5\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\sqrt{12}\)
b) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
c) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
Bài 2: Cho 2 đường thẳng (d): y = -x - 4 và (d₁): y = 3x + 2.
a) Vẽ đồ thị (d) và (d₁) trên cùng một mặt phẳng tọa độ Oxy.
b) Xác định tọa điểm A của 2 đường thẳng trên.
c) Viết pt đường thẳng: (d₂): y = ax + b (a≠0) song song vs đường thẳng (d) và đi qua điểm B(-2;5)
Câu 1:
a: \(\dfrac{2}{5}\sqrt{75}-0,5\cdot\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\cdot\sqrt{12}\)
\(=\dfrac{2}{5}\cdot5\sqrt{3}-0,5\cdot4\sqrt{3}+10\sqrt{3}-\dfrac{2}{3}\cdot2\sqrt{3}\)
\(=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}\)
\(=10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)
b: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)
\(=\dfrac{\sqrt{3}\cdot3\sqrt{3}-2\sqrt{3}}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{9-6}\)
\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+3-\sqrt{6}\)
\(=\dfrac{\sqrt{3}}{\sqrt{2}}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)
c: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
=\(\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
Bài 2:
a:
b: Phương trình hoành độ giao điểm là:
\(3x+2=-x-4\)
=>4x=-6
=>x=-3/2
Thay x=-3/2 vào y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c: Vì (d2)//(d) nên \(\left\{{}\begin{matrix}a=-1\\b\ne-4\end{matrix}\right.\)
Vậy: (d2): y=-x+b
Thay x=-2 và y=5 vào (d2), ta được:
\(b-\left(-2\right)=5\)
=>b+2=5
=>b=5-2=3
Vậy: (d2): y=-x+3