Chứng tỏ
E = \(1+7+7^2+7^3+........+7^{2008}+7^{2009}\)
Chia hết cho 8
Chứng minh rằng 7 mũ 0 + 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + ....... + 7 mũ 2008 + 7 mũ 2009 chia hết cho 8
70 + 71 + 72 + 73 + ... + 72008 + 72009
= (1 + 7) + (1 + 7) . 73 + ... + (1 + 7) . 72009
=8 + 8 . 73 + ... + 8 . 72009
= 8 . (1 + 73 + ... + 72009)
Vậy tổng trên chia hết cho 8
Ta có : ( 70 + 71 + 72 + 73 + ..... + 72008 + 72009 )
(=) ( 1 + 7 + 72 + 7 3 + ...... + 72008 + 72009 )
(=) 1 . ( 1 + 7 ) + 72 . ( 1 + 7 ) + ....... + 72008 . ( 1 + 7 )
(=) ( 1 + 7 ) . ( 1 + 72 + ..... + 72008 )
(=) 8 . ( 1 + 72 + ..... + 72008 ) chia hết cho 8 ( vì 8 chia hết cho 8 )
Chứng minh tổng \(7^0+7^1+...+7^{2008}+7^{2009}\)chia hết cho 8.
Chứng minh:
a) 3107-1 chia hết 8
b)20092009-1 chia hết 2008
c)7701-7 chia hết 48
Chứng minh:
a) 3107-1 chia hết 8
b)20092009-1 chia hết 2008
c)7701-7 chia hết 48
cghttttttttttttttttttttttttttttttttttttttttttttttttttttttt
Tính các tổng sau:
a) A = 1 + 7 + 72 + 73 + ... + 72007
b) B = 1 + 4 + 42 + 43 + ... + 4100
c) Chứng minh rằng: 1414 - 1 chia hết cho 3.
d) Chứng minh rằng: 20092009 - 2 chia hết cho 2008.
a giải luôn cho e nhé
7A=7+72+73+...+72008
7A-A=[7+72+73+...+72008]-[1+7+72+..+72007]
6A=72008-1
A=72008-1/6
b,Tương tư nhân B vs 4 là ra
Mình chỉ trả lời được 2 câu đầu thôi nhé:
a.A= \(1+7+7^2+7^3+...+7^{2007}\)
A.7 = \(7+7^2+7^3+7^4+...+7^{2008}\)
A7-A = \(\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
A6 =\(7^{2008}-1\)
\(\Rightarrow A=7^{2008}-1\)
Câu còn lại làm tương tự bạn nhé
Cminh: (70+71+72+73+...+72008+72009) chia het cho 8
Ta co
(70+71+72+73+...+72008+72009)
=(1 + 7) + (72 + 73) +.... +(72008 + 72009)
=8 + 72.8 + .... +72008.8
=8.(1 + 72 + .... + 72008) chia het cho 8
Ta co
(70+71+72+73+...+72008+72009)
=(1 + 7) + (72 + 73) +.... +(72008 + 72009)
=8 + 72.8 + .... +72008.8
=8.(1 + 72 + .... + 72008) chia het cho 8
M có chia hết cho 1715 ko. Vì sao biết
M = 210( 7^2010+7^2009+7^2008+...+ 7^2+7+1 ) +35
Đặt A = 72010 + 72009 + ... + 72 + 7 + 1
=> 7A = 72011 + 72010 + ... + 73 + 72 + 7
Lấy 7A trừ A theo vế ta có :
7A - A = (72011 + 72010 + ... + 73 + 72 + 7) - (72010 + 72009 + ... + 72 + 7 + 1)
=> 6A = 72011 - 1
=> A = (72011 - 1) : 6
Khi đó M = 210.(72011 - 1) : 6 + 35
= 35.(72011 - 1) + 35
= 35.(72011 - 1 + 1)
= 35.72011
= 35.7.7.72009
= 1715.72009 \(⋮\)1715
=> M \(⋮\)1715(ĐPCM)
Chứng minh rằng:
\(7^{2007}+8^{2008}-9^{2009}\) chia hết cho 10
Chứng minh rằng:
\(7^{2007}+8^{2008}-9^{2009}\) chia hết cho 10
Ta có:
\(\left\{{}\begin{matrix}7^1=\overline{...7}\\7^2=\overline{...9}\\7^3=\overline{...3}\\7^4=\overline{....1}\end{matrix}\right.\) Như vậy \(7^{2007}=\left(7^3\right)^{669}=\overline{...3}\)
\(8^{2008}=\left(2^3\right)^{2008}=2^{6024}=\left(2^4\right)^{1506}=\overline{....6}\)
Lại có:
\(\left\{{}\begin{matrix}9^1=9\\9^2=81\end{matrix}\right.\) Như vậy với số mũ chẵn thì có tận cùng = 1,lẻ có tận cùng =9
Như vậy \(9^{2009}=\overline{...9}\)
Trở lại bài toán
\(7^{2007}+8^{2008}-9^{2009}=\overline{...3}+\overline{...6}-\overline{...9}=\overline{...0}⋮10\)