E=1+7+72+73+...+72008+72009
E=(1+7)+(72+73)+..+(72008+72009)
E=1.(1+7)+72.(1+7)+...+72008.(1+7)
E=1.8+72.8+...+72008.8
E=8.(1+72+...+72008) chia hết cho 8
E=(1+7)+(72+73)+...+(72008+72009)
E=8+72(1+7)+...+72008(1+7)
E=8+72.8+...+72008.8
E=8(1+72+...+72008) chia hết cho 8
=>E chia hết cho 8
E=(1+7)+(7^2+7^3)+...+(7^2008+7^2009)
E=8+7^2.(1+7)+...+7^2008.(1+7)
E=8.7.8+...+7^2008.8
E=8.(1+7+...+7^2008) luôn chia hết cho 8
=> ĐPCM
E=1+7+7^2+7^3+.....+7^2008+7^2009
E=(1+7+7^2)+....+(7^2007+7^2008+7^2009)
E=1.(1+7)+....7^2007.(1+7)
E=1.8+....+7^2007.8
Vì 8 chia hết cho
=>E chia hết cho 8
mình đăng trước mà ko được chứ mình giống các bạn kia
\(E=1+7+7^2+7^3+....+7^{2009}\)
\(E=\left(1+7\right)+\left(7^2+7^3\right)+....+\left(7^{2008}+7^{2009}\right)\)
\(E=\left(1.1+1.7\right)+\left(7^2.1+7^2.7\right)+....+\left(7^{2008}.1+7^{2008}.7\right)\)
\(E=\left(1+7\right).1+\left(1+7\right).7^2+....+\left(1+7\right).7^{2008}\)
\(E=8.1+8.7^2+....+8.7^{2008}\)
\(E=8.\left(1+7^2+7^4+...+7^{2008}\right)\)
Vậy E chia hết cho 8
=> ĐPCM
\(E=1+7+7^2+...+7^{2008}+7^{2009}\)
\(\Rightarrow E=1\times\left(7+1\right)+7^2\times\left(7+1\right)+7^4\times\left(7+1\right)+...+7^{2008}\times\left(7+1\right)\)\(\Rightarrow E=\left(1+7^2+7^4+...+7^{2008}\right)\times\left(1+7\right)\)
E chia hết cho 8
E=(1+7)+(7^2+7^3)+...+(7^2008+7^2009)
E=1(1+7)+7^2(1+7)+...+7^2008(1+7)
E=8+7^2.8+...+7^2008.8
E=8(1+7^2+...+7^2008) chia hết cho 8