Cho hai đa thức A = x 2 + 5 x y + 10 và B = 7 x 2 - 5 x y + 10 . Tính C = 9A – 2B
A. C = - 5 x 2 + 55 x y + 70
B. C = 5 x 2 + 55 x y + 70
C. C = 5 x 2 + 35 x y + 70
D. C = - 5 x 2 + 35 x y + 70
BT17: Cho hai đơn thức\(A=x^2-3xy-y^2+1\) và \(B=2x^2+y^2-7xy-5\)
a, Tính A+B
b, Tìm đa thức C biết C+A-B=0
c, Tính giá trị của đa thức C với \(x=2,y=-\dfrac{1}{2}\)
\(a,A+B=x^2-3xy-y^2+1+2x^2+y^2-7xy-5\)
\(=x^2+2x^2+\left(-3xy-7xy\right)-y^2+y^2+1-5\)
\(=3x^2-10xy-4\)
\(b,C+A-B=0\Rightarrow C=B-A\)
\(=\left(2x^2+y^2-7xy-5\right)-\left(x^2-3xy-y^2+1\right)\)
\(=2x^2+y^2-7xy-5-x^2+3xy+y^2-1\)
\(=x^2+2y^2-4xy-6\)
\(c,x=2;y=-\dfrac{1}{2}\Rightarrow C=2^2+2\left(-\dfrac{1}{2}\right)^2-4.2.\left(-\dfrac{1}{2}\right)-6\)
\(\Rightarrow C=\dfrac{5}{2}\)
Cho hai đa thức: \(A = 4{{\rm{x}}^6} - 2{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 2;\mathop {}\limits^{} B = 3{{\rm{x}}^2}{y^3} + 5{\rm{x}}y - 7\)
a) Tính giá trị của mỗi đa thức A, B tại x = -1; y = 1
b) Tính A + B; A - B
a) Thay x = -1, y = 1 vào đa thức A ta được:
\(\begin{array}{l}A = 4.{\left( { - 1} \right)^6} - 2.{\left( { - 1} \right)^2}{.1^3} - 5.\left( { - 1} \right).1 + 2\\A = 4 - 2 + 5 + 2 = 9\end{array}\)
Vậy A =9 tại x = -1; y = 1
Thay x = -1, y = 1 vào đa thức B ta được:
\(\begin{array}{l}B = 3.{\left( { - 1} \right)^2}{.1^3} + 5.\left( { - 1} \right).1 - 7\\B = 3 - 5 - 7 = - 9\end{array}\)
Vậy B = -9 tại x = -1; y = 1
b) Ta có:
\(\begin{array}{l}A + B = \left( {4{{\rm{x}}^6} - 2{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 2} \right) + \left( {3{{\rm{x}}^2}{y^3} + 5{\rm{x}}y - 7} \right)\\ = 4{{\rm{x}}^6} - 2{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 2 + 3{{\rm{x}}^2}{y^3} + 5{\rm{x}}y - 7\\ = 4{{\rm{x}}^6} + \left( { - 2{{\rm{x}}^2}{y^3} + 3{{\rm{x}}^2}{y^3}} \right) + \left( { - 5{\rm{x}}y + 5{\rm{x}}y} \right) + 2 - 7\\ = 4{{\rm{x}}^6} + {x^2}{y^3} - 5\end{array}\)
\(\begin{array}{l}A - B = \left( {4{{\rm{x}}^6} - 2{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 2} \right) - \left( {3{{\rm{x}}^2}{y^3} + 5{\rm{x}}y - 7} \right)\\ = 4{{\rm{x}}^6} - 2{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 2 - 3{{\rm{x}}^2}{y^3} - 5{\rm{x}}y + 7\\ = 4{{\rm{x}}^6} + \left( { - 2{{\rm{x}}^2}{y^3} - 3{{\rm{x}}^2}{y^3}} \right) + \left( { - 5{\rm{x}}y - 5{\rm{x}}y} \right) + 2 + 7\\ = 4{{\rm{x}}^6} - 5{x^2}{y^3} - 10{\rm{x}}y + 9\end{array}\)
Cho hai đa thức:
\(A = 5{x^2}y + 5x - 3\) và \(B = xy - 4{x^2}y + 5x - 1\).
Thực hiện phép cộng hai đa thức A và B bằng cách tiến hành các bước sau:
- Lập tổng \(A + B = \left( {5{x^2}y + 5x - 3} \right) + \left( {xy - 4{x^2}y + 5x - 1} \right).\)
- Bỏ dấu ngoặc và thu gọn đa thức nhận được.
\(\begin{array}{l}A + B = \left( {5{x^2}y + 5x - 3} \right) + \left( {xy - 4{x^2}y + 5x - 1} \right)\\ = 5{x^2}y + 5x - 3 + xy - 4{x^2}y + 5x - 1\\ = \left( {5{x^2}y - 4{x^2}y} \right) + xy + \left( {5x + 5x} \right) + \left( { - 3 - 1} \right)\\ = {x^2}y + xy + 10x - 4\end{array}\)
Cho đa thức \(P = 3{x^2}y - 2x{y^2} - 4xy + 2\).
a) Tìm đa thức \(Q\) sao cho \(Q - P = - 2{x^3}y + 7{x^2}y + 3xy\)
b) Tìm đa thức \(M\) sao cho \(P + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\)
\(a,Q=\left(-2x^3y+7x^2y+3xy\right)+P=\left(-2x^3y+7x^2y+3xy\right)+\left(3x^2y-2xy^2-4xy+2\right)\\ =-2x^3y+7x^2y+3xy+3x^2y-3xy^2-4xy+2\\ =-2x^3y^2+10x^2y-3xy^2-xy+2\)
\(b,M=\left(3x^2y^2-5x^2y+8xy\right)-P\\ =\left(3x^2y^2-5x^2y+8xy\right)-\left(3x^2y-2xy^2-4xy+2\right)\\ =3x^2y^2-5x^2y+8xy-3x^2y^2+2xy^2+4xy-2\\ =-3x^2y+12xy-2\)
Bài 2: Cho đa thức A= -4\(x^5\)\(y^3\)+ 6\(x^4\)\(y^3\)- 3\(x^2\)\(y^3\)\(z^2\)+ 4\(x^5\)\(y^3\)- \(x^4y^3\)+ 3\(x^2y^3z^2\)- 2\(y^4\)+22
a) Thu gọn rồi tìm bậc của đa thức A
b) Tìm đa thức B, biết rằng: B-\(5y^4\)=A
`a)`
`A=-4x^5y^3+6x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+3x^2y^3z^2-2y^4+22`
`A=(-4x^5y^3+4x^5y^3)+(6x^4y^3-x^4y^3)-(3x^2y^3z^2-3x^2y^3z^2)-2y^4+22`
`A=5x^4y^3-2y^4+22`
`->` Bậc: `7`
`b)B-5y^4=A`
`=>B=A+5y^4`
`=>B=5x^4y^3-2y^4+22+5y^4`
`=>B=5x^4y^3+3y^4+22`
- Cho hai đa thức : A(y) = y^2- y+ 1/2 và B (x) = 2x^5 - 3x+7x^3 + 4x^5 + 1/2
+) Tính A(5),B(2) theo mẫu
Mẫu: A(-1) = 7*(-1)^2 - 3*(-1) + 1/2 =10 và 1/2
Cho hai đa thức $P(x)=x^4-5 x^3+4 x-5$ và $Q(x)=-x^4+3 x^2+2 x+1$.
a) Hãy tìm tổng $P(x)+Q(x)$.
b) Tìm đa thức $R(x)$ sao cho $P(x)=R(x)+Q(x)$.
a. \(x^4-5x^3+4x-5-x^4+3x^2+2x+1\)
\(=-5x^3+3x^2+6x-4\)
b. \(R\left(x\right)=x^4-5x^3+4x-5-\left(-x^4+3x^2+2x+1\right)\)
\(=x^4-5x^3+4x-5+x^4-3x^2-2x-1\)
\(=2x^4-5x^3-3x^2+2x-6\)
a, P(x) + Q (x)=(x4- 5x3 +4x -5) + ( -x4 + 3X2 +2x + 1)
= x4 -5x3 + 4x - 5 - x4 +3x2 + 2x + 1
= ( x4 - x4) + ( 4x + 2x) + ( -5 +1 ) - 5x3
= 0 + 6x + 4 -5x3
= -5x3 + 6x + 4
b, Do P(x) = R(x) + Q(x )
nên R(x )=P(x) - Q(x)
P(x) - Q(x) = (x4 - 5x3 + 4x - 5) - ( -x4 + 3x2 +2x + 1)
= x4 - 5x3 + 4x -5 + x4 - 3x2 - 2x -1
= ( x4 + x4) + ( 4x -2x) + (-5 - 1) -5x3
=2x4 + 2x -6 - 5x3
= 2x4 -5x3 + 2x - 6
Vậy đa thức R(x) là 2x4 - 5x3 +2x - 6
Cho đa thức: A= x\(^6\)+5+xy-x-2x\(^2\)-x\(^5\)-xy-2. a)Thu gọn và tìm bậc của đa thức A b)Tính giá trị của đa thức A với x=-1,y=2018 c)Chứng tỏ x=1 là nghiệm của đa thức A
a) Ta có: \(A=x^6+5+xy-x-2x^2-x^5-xy-2\)
\(=x^6-x^5-2x^2-x+3\)
Bậc là 6
b) Thay x=-1 và y=2018 vào A, ta được:
\(A=\left(-1\right)^6-\left(-1\right)^5-2\cdot\left(-1\right)^2-\left(-1\right)+3\)
\(=1-\left(-1\right)-2\cdot1+1+3\)
\(=1+1-2+1+3\)
=4
a, \(A=x^6+5+xy-x-2x^2-x^5-xy-2=x^6-x^5-2x^2-x+3\)
Bậc 6
b, Với x = -1 suy ra : \(1-\left(-1\right)-2-\left(-1\right)+3=1+1-2+1+3=4\)
c, Vì x = 1 là nghiệm của đa thức A nên Thay x = 1 vào đa thức A ta được
\(1-1-2-1+3=0\)( luôn đúng )
Vậy ta có đpcm
Cho hai đa thức \(A = 2{x^2}y + 3xyz - 2x + 5\) và \(B = 3xyz - 2{x^2}y + x - 4\).
a) Tìm các đa thức A+B và A-B.
b) Tính giá trị của các đa thức A và A+B tại x=0,5;y=-2 và z=1.
a. \(A+B=2x^2y+3xyz-2x+5+3xyz-2x^2y+x-4=6xyz-x+1\\ A-B=2x^2y+3xyz-2x+5-3xyz+2x^2y-x+4=4x^2y-3x+9\)
b. Khi x = 0,5, y = -2, z = 1, ta có:
\(A=2\cdot0,5^2\cdot\left(-2\right)+3\cdot0,5\cdot\left(-2\right)\cdot1-2\cdot0,5+5=0\\ A+B=6\cdot0,5\cdot\left(-2\right)\cdot1-0,5+1=-\dfrac{11}{2}\)
Cho đa thức A=-9/10 x^3y-2/3 xy2+4x^2-7x-2
B=-3x^2+9/10x^3y+7x+2/3+5
a)Tìm D sao cho D-A là đa thức không có bậc
d)Có giá trị nào của x,y để 2 đa thức A,B cùng nhận giá trị âm hay không?