tìm x biêt :
a)[ 2x ] = -1
b) [x+0.4]=3
c)[2/3.x-5]=3
Tìm x,biêt
a)x+7/x+3=2x+5/2x+1
b)x-2/x-1=x+4/x+7
Giai nhanh giug mình nha
tìm số nguyên x biêt: a)x mũ 2=100 b)(x-3).(2x+4)=3 c)23 chia hết cho (2x-1)
a: \(\Leftrightarrow x\in\left\{10;-10\right\}\)
b: \(\Leftrightarrow2x^2+4x-6x-12-3=0\)
\(\Leftrightarrow2x^2+2x-15=0\)
\(\Delta=2^2-4\cdot2\cdot\left(-15\right)=4+120=124\)
=>Ko có số nguyên x nào thỏa mãn bài toán
c: \(\Leftrightarrow2x-1\in\left\{1;-1;23;-23\right\}\)
hay \(x\in\left\{1;0;12;-11\right\}\)
Tìm x biêt:
a)|3x+1|=|x-5|
b)(2x-5)2=(x+1)2
c)(x-3)(x+4)<0
d)(x+7)(x+2)>0
Giải phương trình:(Nhớ tìm điều kiện)
a) \(\sqrt{2x-1}=\sqrt{5}\)
b)\(\sqrt{x-5}\) = 3
c)\(\sqrt{4x^2+4x+1}=6\)
d)\(\sqrt{\left(x-3\right)^2}=3-x\)
e)\(\sqrt{2x+5}=\sqrt{1-x}\)
f)\(\sqrt{x^2-x}=\sqrt{3-x}\)
g)\(\sqrt{2x^2-3}=\sqrt{4x-3}\)
h)\(\sqrt{2x-5}=\sqrt{x-3}\)
i)\(\sqrt{x^2-x+6}=\sqrt{x^2+3}\)
a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)
PT <=> 2x - 1 = 5
<=> x = 3 ( TM )
Vậy ...
b, ĐKXĐ : \(x\ge5\)
PT <=> x - 5 = 9
<=> x = 14 ( TM )
Vậy ...
c, PT <=> \(\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy ...
d, PT<=> \(\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)
Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)
e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)
PT <=> 2x + 5 = 1 - x
<=> 3x = -4
<=> \(x=-\dfrac{4}{3}\left(TM\right)\)
Vậy ...
f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
PT <=> \(x^2-x=3-x\)
\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )
Vậy ...
a) \(\sqrt{2x-1}=\sqrt{5}\) (x \(\ge\dfrac{1}{2}\))
<=> 2x - 1 = 5
<=> x = 3 (tmđk)
Vậy S = \(\left\{3\right\}\)
b) \(\sqrt{x-5}=3\) (x\(\ge5\))
<=> x - 5 = 9
<=> x = 4 (ko tmđk)
Vậy x \(\in\varnothing\)
c) \(\sqrt{4x^2+4x+1}=6\) (x \(\in R\))
<=> \(\sqrt{\left(2x+1\right)^2}=6\)
<=> |2x + 1| = 6
<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)
Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)
Bài 1:Tìm x,biêt:
a)(x+5)2=100
b)(2x-4)2=0
c)(x-1)3=27
a) \(\left(x+5\right)^2=100\Leftrightarrow\orbr{\begin{cases}\left(x+5\right)^2=10^2\\\left(x+5\right)^2=\left(-10\right)^2\end{cases}\Leftrightarrow\orbr{\begin{cases}x+5=10\\x+5=-10\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=-15\end{cases}}}\)
b) \(\left(2x-4\right)^2=0\Leftrightarrow2x-4=0\Leftrightarrow2x=4\Leftrightarrow x=2\)
c) \(\left(x-1\right)^3=27\Leftrightarrow\left(x-1\right)^3=3^3\Leftrightarrow x-1=3\Leftrightarrow x=4\)
a) \(\left(x+5\right)^2=100\)
=> \(\orbr{\begin{cases}\left(x+5\right)^2=10^2\\\left(x+5\right)^2=\left(-10\right)^2\end{cases}}\)
=> \(\orbr{\begin{cases}x+5=10\\x+5=-10\end{cases}}\)
=> \(\orbr{\begin{cases}x=5\\x=-15\end{cases}}\)
b) \(\left(2x-4\right)^2=0\)
=> \(2x-4=0\)
=> \(2x=4\)
=> \(x=2\)
c) \(\left(x-1\right)^3=27\)
=> \(\left(x-1\right)^3=3^3\)
=> \(x-1=3\)
=> \(x=4\)
` P = ( (x)/(2x-2) + ( 3 - x )/(2x^2-2) ) : ( (x+1)/(x^2+x+1) + ( x+2)/(x^3-1) ) `
a) rút gọn
b) Tìm x để P = 3
c) Tìm x để P > 4
d) So sánh P với 2
` P = ( (x)/(2x-2) + ( 3 - x )/(2x^2-2) ) . ( (x+1)/(x^2+x+1) + ( x+2)/(x^3-1) ) `
a) rút gọn
b) Tìm x để P = 3
c) Tìm x để P > 4
d) So sánh P với 2
a: Sửa đề: \(P=\left(\dfrac{x}{2x-2}+\dfrac{3-x}{2x^2-2}\right):\left(\dfrac{x+1}{x^2+x+1}+\dfrac{x+2}{x^3-1}\right)\)\(P=\left(\dfrac{x}{2\left(x-1\right)}+\dfrac{3-x}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{\left(x+1\right)\left(x-1\right)+x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x\left(x+1\right)+3-x}{2\left(x-1\right)\left(x+1\right)}:\dfrac{x^2-1+x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}\)
\(=\dfrac{x^2+3}{2\left(x+1\right)}\)
b: P=3
=>x^2+3=6(x+1)=6x+6
=>x^2-6x-3=0
=>\(x=3\pm2\sqrt{3}\)
c: P>4
=>P-4>0
=>\(\dfrac{x^2+3-8\left(x+1\right)}{2\left(x+1\right)}>0\)
=>\(\dfrac{x^2-8x-5}{x+1}>0\)
TH1: x^2-8x-5>0 và x+1>0
=>x>-1 và (x<4-căn 21 hoặc x>4+căn 21)
=>-1<x<4-căn 21 hoặc x>4+căn 21
Th2: x^2-8x-5<0 và x+1<0
=>x<-1 và (4-căn 21<x<4+căn 21)
=>Vô lý
a) x+1/2x-6-4/2x-6 b) 3x-4/6x+3-x-5/6x+3
c) x-1/x-3-3x-8/3-x+3-2x/x-3 d) 3/x+5-5/x-7
e) 3/x+5-5/x-7 f) 2/x-2+3/x+2+5x-18/x2-4
Tìm x biêt:
a)5x(x-1\3)=0
b)(x+1\4)(x-2\3)=0
c)1+3x=-5
d)1,5x-\(2\frac{1}{3}\)=1,5-2\3
e)2\3+1\3:x=3\5
y)\(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\)