CMR:11n+2+122n+1 chia hết cho 133
Gợi ý:Dùng đồng dư thức
Chứng minh rằng với mọi n ∈ N ∗ ta có 11 n + 1 + 12 2 n − 1 chia hết cho 133.
Những hằng đẳng thức đáng nhớ (Tiếp 2)
bài 1 cho a+b=1. tính gái trị M = 2(a3+b3) - 3(a3+b3)
bài 2 với n là số tự nhiên cmr
a,11n+2+122n+1(chia hết 133)
b, 5n+2+26.5n+82n+1 (chia hết cho 59)
giúp mình vói mình đang cần gấp
2. CMR: 7.52n+12.6n chia hết cho 19
*Sử dụng đồng dư thức
Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)
Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)
\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)
Do \(19.6^n⋮19\Rightarrow A⋮19\)
A = 7.52n + 12.6n
A = 7.(52)n + 12.6n
A = 7.25n + 12.6n
25 \(\equiv\) 6 (mod 19)
25n \(\equiv\) 6n (mod 19)
7 \(\equiv\) - 12 (mod 19)
⇒ 7.25n \(\equiv\) -12.6n (mod 19)
⇒ 7.25n -( -12.6n) ⋮ 19
⇒ 7.25n + 12.6n ⋮ 19
Ta có:
\(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)
Vì \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)
\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)
\(\Rightarrow A\equiv0\left(mod19\right)\)
Vậy ....
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
GIÚP TỚ NKE EVERYONE. I WILL TICK FOR YOU.
Đêm ùi mà còn nhờ 1 đống zậy muốn xỉu lun oy
Toán khó phải có người lo mink ko lo đc mấy bn lo dùm mink nka
bài 1 CMR:
a,(1991^1997-1997^1996) chia hết cho 10
b,(2^9+2^99) chia hết cho 100
bài 2 CMR
a,nếu a đồng dư1(mod2)thì a^2 đồng dư 1(mod8)
b, nếu a đồng dư 1(mod3) thì a^3 đồng dư 1(mod9)
bài này vượt quá giới hạn của ta rồi
Câu 1 cách làm:
Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính
2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)
CMR: P=34n+1+2 chia hết cho 5
( chú ý làm theo phương pháp đồng dư thức nhé!)
Ta có: 34 = 1 (mod 5)
=>34n = 1n (mod 5)
=>34n.3 = 1.3 (mod 5)
=>34n+1 = 3 (mod 5)
=>34n+1+2 = 3+2 (mod 5)
=>P = 0 (mod 5)
Vậy P chia hết cho 5(đpcm)
"=" là đồng dư nha
ta có 34n+1+2=34n x 3 + 2= ...1 x 3 +2=...3+2=...5 chia hết cho 5
vậy p chia hết cho 5(đpcm)
P=34n+1+2
=34n.3+2
=(34)n.3+2
=81n.3+2
=......1.3+2
=.......3+2
=........5 chia hết cho 5 (đpcm)
CMR m+11n chia hết cho 12 thì 9m+3n chia hết cho 12
Ta có : m +11n \(⋮\) 12
<=> 9m + 99n \(⋮\) 12
Mà [( 9m + 99n) - (9m +3n) ] = 96n \(⋮\) 12
Vì 9m + 99n \(⋮\) 12 ; 96n \(⋮\) 12
Nên 9m+3n \(⋮\)12 ( đpcm)
CMR m+11n chia hết cho 12 thì 9m+3n chia hết cho 12