Chứng minh rằng với mọi n ∈ N ∗ ta có 2 n 3 − 3 n 2 + n chia hết cho 6
Chứng minh với mọi n ∈ N * , ta có: 13 n – 1 chia hết cho 6
Chứng minh với mọi n ∈ N * , ta có: 3 n 3 + 15 chia hết cho 9
Chứng minh rằng với mọi số nguyên n, ta có:
1.4 + 2.7 + ⋅ ⋅ ⋅ + n 3 n + 1 = n n + 1 2 (1)
Với mỗi số nguyên dương n, gọi u n = 9 n - 1 . Chứng minh rằng với mọi số nguyên dương n thì un luôn chia hết cho 8.
Chứng minh rằng với n ∈ N * , ta có đẳng thức: 2 + 5 + 8 + . . . + 3 n - 1 = n 3 n + 1 2
Help
Chứng minh rằng với mọi số nguyên n≥2n≥2, ta luôn có đẳng thức sau :
(1−14)(1−19)...(1−1n2)=n+12n
Chứng minh rằng với n ∈ N * : 4 n + 15 n – 1 chia hết cho 9
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta luôn có: 2 n + 1 > 2 n + 3 (*)