+ Với n = 1, ta có:
VT = 3 – 1 = 2
⇒ VT = VP
⇒ (1) đúng với n = 1
+ Giả sử (1) đúng với n = k ≥ 1 nghĩa là:
2 + 5 + 8 + …+ (3k – 1) = k(3k + 1)/2. (*)
Ta cần chứng minh (1) đúng với n = k + 1, tức là :
Thật vậy :
Ta có :
+ Với n = 1, ta có:
VT = 3 – 1 = 2
⇒ VT = VP
⇒ (1) đúng với n = 1
+ Giả sử (1) đúng với n = k ≥ 1 nghĩa là:
2 + 5 + 8 + …+ (3k – 1) = k(3k + 1)/2. (*)
Ta cần chứng minh (1) đúng với n = k + 1, tức là :
Thật vậy :
Ta có :
Chứng minh các đẳng thức sau (với n∈N∗n∈N∗)
a) 2+5+8+...+(3n−1)=n(3n+1)22+5+8+...+(3n−1)=n(3n+1)2;
b) 3+9+27+...+3n=12(3n+1−3)3+9+27+...+3n=12(3n+1−3).
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta có các bất đẳng thức: 2 n + 1 > 2 n + 3
Help
Chứng minh rằng với mọi số nguyên n≥2n≥2, ta luôn có đẳng thức sau :
(1−14)(1−19)...(1−1n2)=n+12n
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta có bất đẳng thức: 3 n > 3 n + 1
Chứng minh đẳng thức sau ( v ớ i n ∈ N ∗ ) 2 + 5 + 8 + . . . + ( 3 n - 1 ) = 3 3 n + 1 2
Chứng minh rằng với n ∈ N * , ta có đẳng thức: 1 2 + 1 4 + 1 8 + . . . + 1 2 n = 2 n - 1 2 n
Chứng minh rằng với n ∈ N*, ta có đẳng thức: 1 2 + 2 2 + 3 2 + . . . . + n 2 = n n + 1 2 n + 1 6
Chứng minh các bất đẳng thức sau 3n − 1 > n(n + 2) với n ≥ 4
Chứng minh các đẳng thức sau với n ∈ N ∗ B n = 1 + 3 + 6 + 10 + . . . + n n + 1 2 = n n + 1 n + 2 6