Kiểm tra với n = 1
Giả sử đã cho
Ta cần chứng minh
bằng cách tính
Kiểm tra với n = 1
Giả sử đã cho
Ta cần chứng minh
bằng cách tính
Chứng minh các đẳng thức sau (với n∈N∗n∈N∗)
a) 2+5+8+...+(3n−1)=n(3n+1)22+5+8+...+(3n−1)=n(3n+1)2;
b) 3+9+27+...+3n=12(3n+1−3)3+9+27+...+3n=12(3n+1−3).
Chứng minh các bất đẳng thức sau 3n − 1 > n(n + 2) với n ≥ 4
Chứng minh đẳng thức sau ( v ớ i n ∈ N ∗ ) 2 + 5 + 8 + . . . + ( 3 n - 1 ) = 3 3 n + 1 2
Help
Chứng minh rằng với mọi số nguyên n≥2n≥2, ta luôn có đẳng thức sau :
(1−14)(1−19)...(1−1n2)=n+12n
Chứng minh các bất đẳng thức sau ( n ∈ N ∗ ) sin 2 n α + cos 2 n α ≤ 1 .
Chứng minh các đẳng thức sau với n ∈ N ∗ A n = 1 1 . 2 . 3 + 1 2 . 3 . 4 + . . . + 1 n n + 1 n + 2 = n n + 3 4 n + 1 n + 2
Chứng minh các bất đẳng thức n n 2 + 1 ≤ 1 2 và n 2 + 1 2 n ≥ 1 với mọi n ∈ N * .
Chứng minh rằng với n ∈ N * , ta có đẳng thức: 2 + 5 + 8 + . . . + 3 n - 1 = n 3 n + 1 2
Chứng minh các bất đẳng thức sau ( n ∈ N ∗ ) 2 n + 2 > 2 n + 5