Nghiệm của hệ phương trình 3 y − 5 + 2 x − 3 = 0 7 x − 4 + 3 x + y − 1 − 14 = 0 là (x; y).
Tính x 2 + y 2 .
A. 8
B. 34
C. 21
D. 24
Bài 5 : Cho hệ phương trình : x+y=3 và -mx - y = 2m
Xác định m để hệ phương trình có một nghiệm ? Vô nghiệm ? Vô số nghiệm ?
`{(x+y=3),(-mx-y=2m):}`
`<=>{(x=3-y),(-m(3-y)-y=2m):}`
`<=>{(x=3-y),(my-3m-y=2m):}`
`<=>{(x=3-y),(m(y-1)=5m):}`
Hệ phương có 1 nghiệm
`<=>m\ne0`
Hệ phương trình vô nghiệm(ax=b vô nghiệm khi a=0 và `b\ne0`)
`<=>{(m=0),(m\ne0):}` vô lý
Hệ phương trình có vô số nghiệm(ax=b vô số nghiệm khi a=0 và `b=0`)
`<=>{(m=0),(m=0):}<=>m=0`
Bài tập 1 Cho hệ phương trình (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x = và y = .
3. Tìm nghiệm của hệ phương trình (1) theo m.
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
Cho hệ phương trình 2 x + y = 4 x + y = 5
Giả sử (x;y) là nghiệm của hệ phương trình, khi đó x 2 + 2 y bằng
A. 13.
B. 7.
C. 11.
D. 5.
cho hệ phương trình mx-y=2
3x+my=5( m là tham số)
xác định các giá trị của tham số m để hệ phương trình có nghiệm duy nhất(x;y) thỏa mãn x+y=3/m2+3
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{3}\ne-\dfrac{1}{m}\)
=>\(m^2\ne-3\)(luôn đúng)
\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m\cdot\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+3\right)=5+2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{2m^2+5m}{m^2+3}-2=\dfrac{2m^2+5m-2m^2-6}{m^2+3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{5m-6}{m^2+3}\end{matrix}\right.\)
\(x+y=\dfrac{3}{m^2+3}\)
=>\(\dfrac{2m+5+5m-6}{m^2+3}=\dfrac{3}{m^2+3}\)
=>\(7m-1=3\)
=>7m=4
=>m=4/7(nhận)
Cho hệ phương trình \(\hept{\begin{cases}mx-y=5\\x+y=1\end{cases}}\)
Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất? Hệ phương trình vô nghiệm?
\(\hept{\begin{cases}mx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\mx-1+x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\\left(m+1\right)x=6\end{cases}}\)
Để hệ có nghiệm duy nhất thì
m + 1 ≠ 0 <=> m ≠ - 1
Để hệ vô nghiệm thì
m + 1 = 0 <=> m = - 1
\(D=m+1\) ; \(D_x=5+1=6\) ; \(D_y=m-5\)
Để hpt có nghiệm duy nhất thì \(D\ne0\Rightarrow m\ne-1\)
Để hpt vô nghiệm thì \(\hept{\begin{cases}D=0\\D_x\ne0\end{cases}}\) hoặc \(\hept{\begin{cases}D=0\\D_y\ne0\end{cases}}\)
Dễ thấy ngay \(D_x\ne0\) . Vậy m = -1 thì hệ vô nghiệm.
Cho hệ phương trình: \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
a/Với giá trị nào của k thì hệ phương trình có nghiệm là \(\left(x;y\right)=\left(2;-1\right)\)
b/Với giá trị nào của k thì hệ phương trình có nghiệm duy nhất?hệ phương trình vô nghiệm?
a) Ta có hệ phương trình \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\) Thay nghiệm \(\left(x,y\right)=\left(2,-1\right)\) ta có hệ mới là :
\(\hept{\begin{cases}2k-1=5\\2-1=1\end{cases}\Leftrightarrow k=3}\)
b) Ta có : \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\kx-1-x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\x\left(k-1\right)=6\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất : \(\Leftrightarrow k-1\ne0\) \(\Leftrightarrow k\ne1\)
Để hệ phương trình vô nghiệm \(\Leftrightarrow k-1=0\Leftrightarrow k=1\)
P/s : Em chưa học lớp 9 nên không biết cách trình bày cho lắm :))
a)cho hệ phương trình \(\hept{\begin{cases}x-2y=3-m\\2x+y=3\left(m+2\right)\end{cases}}\)
Gọi nghiệm của hệ phương trình là(x;y)Tìm m để \(x^2+y^2\)đạt GTNN
b)Cho hệ phương trình \(\hept{\begin{cases}mx+y=5\\2x-y=2\end{cases}}\)
Tìm m để hệ phương trình có nghiệm thỏa mãn x+y=1
Cho hệ phương trình 4 x - 3 y = 9 2 x + y = 5
Giả sử (x;y) là nghiệm của hệ phương trình, khi đó x y bằng
A. 12.
B. 12 25
C. 1.
D. 5.
Cho hệ phương trình 2 x + 3 y = − 2 3 x − 2 y = − 3 . Nghiệm của hệ phương trình là (x; y), tính x + y
A. x + y = −1
B. x + y = 1
C. x + y = 0
D. x + y = 2
2 x + 3 y = − 2 3 x − 2 y = − 3 ⇔ 4 x + 6 y = − 4 9 x − 6 y = − 9 ⇔ 13 x = − 13 2 x + 3 y = − 2 ⇔ x = − 1 y = 0
Vậy hệ đã cho có nghiệm duy nhất (x; y) = (−1; 0)
x – y = −1 – 0 = −1
Đáp án: A