Tập xác định của hàm số y = tan x là:
A. ℝ .
B. ℝ \ π 2 + k π , k ∈ ℤ .
C. ℝ \ k π , k ∈ ℤ .
D. ℝ \ π 2 + k π 2 , k ∈ ℤ .
Hàm số y = log 2 4 x − 2 x + m có tập xác định là ℝ thì
A. m < 1 4
B. m > 0
C. m ≥ 1 4
D. m > 1 4
Đáp án D
Hàm số có tập xác định là ℝ ⇔ 4 x − 2 x + m > 0 , ∀ x ∈ ℝ ⇔ m > 2 x − 4 x ∀ x ∈ ℝ
Đặt t = 2 x > 0 ⇒ m > t − t 2 ∀ t > 0 ⇔ m > max t > 0 f t ⇔ m > 1 4
Cho hàm số y=f(x) xác định và liên tục trên tập D = ℝ \ { - 1 } và có bảng biến thiên:
Dựa vào bảng biến thiên của hàm số y=f(x) Khẳng định nào sau đây là khẳng
định sai?
A. Giá trị nhỏ nhất của hàm số trên đoạn [ 1 ; 8 ] bằng -2
B. Phương trình f(x)=m có 3 nghiệm thực phân biệt khi x > -2
C. Hàm số đạt cực tiểu tại x=3
D. Hàm số nghịch biến trên khoảng ( - ∞ ; 3 )
Đáp án D
Tại -1 hàm số không xác định nên không nghịch biến trên ( - ∞ ; 3 )
Tìm tập xác định D = ℝ của hàm số y = log 2 x + 1 - 1
A. D = ( - ∞ ; 1 ]
B. D = 3 ; + ∞
C. D = [ 1 ; + ∞ )
D. D = ℝ \ 3
Hàm số y = log 2 x + 1 - 1 xác định khi
Chọn C.
Hàm số y = log2 (4x – 2x + m) có tập xác định là ℝ thì
A. m < 1 4
B. m > 0
C. m ≥ 1 4
D. m > 1 4
Đáp án D
Hàm số có tập xác định là R <=> 4x – 2x + m > 0, ∀ x ∈ ℝ
⇔ m > 2 x - 4 x ∀ x ∈ ℝ
Đặt t = 2x > 0 => m > t – t2 ∀ t > 0
⇔ m > m a x t > 0 f t ⇔ m > 1 4 .
Hàm số y = ln(x2 – 2x + m) có tập xác định là ℝ khi:
A. m > 1.
B. m ≥ 1 .
C. m > 0.
D. m ≥ 0 .
Hàm số y = log 2 ( 4 x - 2 x + m ) có tập xác định là D = ℝ khi
A . m ≤ 1 4
B . m ≥ 1 4
C . m > 1 4
D . m < 1 4
Chọn C
Hàm số y = log 2 ( 4 x - 2 x + m ) có tập xác định là D = ℝ
Đặt Khi đó, bất phương trình (1) trở thành:
Xét hàm số
Ta có: f'(t) = 2t + 1; f'(t) = 0 ⇔ t = 1 2
Bảng biến thiên:
Dựa vào bảng biến thiên, suy ra
Từ (*) suy ra
Hàm số y = ln x 2 − 2 m x + 4 có tập xác định D = ℝ khi các giá trị của tham số m là
A. m < 2
B. m < − 2 m > 2
C. m = 2
D. − 2 < m < 2
Đáp án D
Hàm số có tập xác định D = ℝ
⇔ x 2 − 2 m x + 4 > 0 , ∀ x ∈ ℝ
⇔ Δ ' < 0 ⇔ m 2 − 4 < 0 ⇔ − 2 < m < 2
Cho hàm số y = f ( x ) xác định và liên tục trên tập D = ℝ \ 1 và có bảng biến thiên
Dựa vào bảng biến thiên của hàm số y = f x . Khẳng định nào sau đây là sai?
A. Phương trình f x = m có 3 nghiệm thực phân biệt khi x > -2
B. Giá trị nhỏ nhất của hàm số trên đoạn 0 ; 6 là -2
C. Hàm số đạt cực tiểu tại x = 1
D. Hàm số nghịch biến trên khoảng − ∞ ; 1
Đáp án D
Khẳng định sai là “Hàm số nghịch biến trên khoảng − ∞ ; 1 ” do hàm số không xác định tại x = - 2
Tìm m để hàm số y = cos x 3 sin 5 x - 4 cos 5 x - 2 m + 3 có tập xác định là ℝ
A. m < -3
B. m < -2
C. m < -1
D. m ≤ -1
Tập D = ℝ / k π 2 k ∈ ℤ là tập xác định của hàm số nào sau đây?