Tìm x :
b) 6 x + 1 2 = 2
1, Tìm x, biết \(x^2\) – 36 = 0
A. x = 6. B. x = -6.
C. x = 6; x = -6. D. x = 36 hoặc x = - 36.
2, Tìm x, biết \(x^3\) – 3\(x^2\) + 3x - 1 = 0
A. x = 1. B. x = -1. C. x = 0. D. x = 2.
Cho biểu thức B =(\(\dfrac{x^3}{x^3-4x}+\dfrac{6}{^{6-3x}}+\dfrac{1}{2+x}\)): (x+2+\(\dfrac{10-x^2}{x-2}\))
a) Rút gọn B
b) Tìm B biết x2-5x+6=0
c) Tìm x ∈ Z để B ∈ Z
d) Tìm x biết |B|>1
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
giúp với ạ
cho đa thức :A(x)=x^4-4x^3+2x^2-5x+6.
a, tính giá trị đa thức A(x) biết |4x-1|=1 .
b, tìm đa thức B(x) biết : a(x) -b(x) = 3x^2-x-3x^3-x^2+x^4-2x^2+6 .
c, tìm nghiêm đa thức B(x)
1, Tìm Min :
a, A = 6/ -2x^2 - 3
b, B= x^2 - 3x + 3 / x^2 - x +1
2, Tìm max:
D = x/(x+1)^2
Cho biểu thức:
B=\(\left(\dfrac{x^2}{x^2-4x}-\dfrac{10x}{5x-10}-\dfrac{1}{2-x}\right):\left(x+2+\dfrac{6-x^2}{x-2}\right)\)
a/ Rút gọn B
b/ Tính B biết \(\left|x\right|=\dfrac{1}{2}\)
c/ Tìm x biết B=-1
d/ Tìm x để B>0
e/ Tìm x nguyên để B nguyên
giúp
bài 8 tìm x là số tự nhiên
a 1/2 - 1/3 < x < 1/2 + 1/3 b 1/2 - 1/6 < x < 1/2 ; 1/6
Tìm x:
a) (x - 5)(x + 3) = x(x - 3)
b) (x + 2)2 = (x - 1)(x + 2)
c) (x - 6)(x + 6) = x2
d) (2x - 3)2 = 4x2 - 8
a: Ta có: \(\left(x-5\right)\left(x+3\right)=x\left(x-3\right)\)
\(\Leftrightarrow x^2-2x-15-x^2+3x=0\)
\(\Leftrightarrow x=15\)
b: Ta có: \(\left(x+2\right)^2=\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow x+2=0\)
hay x=-2
c: Ta có: \(\left(x-6\right)\left(x+6\right)=x^2\)
\(\Leftrightarrow x^2-36=x^2\)(vô lý)
a. (x - 5)(x + 3) = x(x - 3)
<=> x2 + 3x - 5x - 15 = x2 - 3x
<=> x2 - x2 + 3x - 5x + 3x - 15 = 0
<=> x = 15
b. (x + 2)2 = (x - 1)(x + 2)
<=> x2 + 4x + 4 = x2 + 2x - x - 2
<=> x2 - x2 + 4x - 2x + x = -2 - 4
<=> 3x = -5
<=> \(x=\dfrac{-5}{3}\)
c. (x - 6)(x + 6) = x2
<=> x2 - 36 - x2 = 0
<=> x2 - x2 = 36
<=> 0 = 36 (vô lí)
Vậy nghiệm của PT là \(S=\varnothing\)
d. (2x - 3)2 = 4x2 - 8
<=> 4x2 - 12x + 9 - 4x2 + 8 = 0
<=> 4x2 - 4x2 - 12x = -8 - 9
<=> -12x = -17
<=> \(x=\dfrac{17}{12}\)
bài 1 : tìm x biết
a, ( x - 2 ) : 2 x 3 = 6
b, X : ( hỗn số 3 1/2 x hỗn số 2 2/3 ) = 9/56
c, 1 + 3 + 5 + .....+ ( 2 x X + 1 ) = 625
bài 2 : tìm x biết
a, ( x - 1/2 ) x 5/3 = 7/4 - 1/2
b, 5 x X + X = 42
c, ( x+1 ) + ( x+ 3 ) + ( x + 5 ) + ....+ ( x + 11 ) = 58
bài 3 tìm x biết
a, X - 1,25 x 4 = 7,5
b, X = ( hỗn số 6 3/5 : 6 - 0 , 125 x 8 + hỗn số 2 2/15 x 0,03 ) x 2/11
c, ( X + 1 ) +(X + 2 ) + ( X + 3 ) + ....+(X + 20 ) = 750
1
\(\left(x-2\right):2.3=6\)
\(\Leftrightarrow\left(x-2\right):2=2\)
\(\Leftrightarrow\left(x-2\right)=4\)
\(\Leftrightarrow x=4+2=6\)
c) ta có
\(\left[\left(2x+1\right)+1\right]m:2=625\)
\(\Leftrightarrow\left[\left(2x+1\right)+1\right]\left\{\left[\left(2x+1\right)-1\right]:2+1\right\}=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-1:2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2=1249\)
\(\Leftrightarrow\left(2x+1\right)^2+1=1251\)
\(\Leftrightarrow\left(2x+1\right)^2=1250\)
...
2
\(\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{5}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}:\frac{5}{3}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}.\frac{3}{5}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)