Giải các phương trình sau: (4x – 10)(24 + 5x) = 0
Giải các phương trình sau:
a. (4x−10)(24+5x)=0(4x−10)(24+5x)=0
b. (3,5−7x)(0,1x+2,3)=0
a. (4x−10)(24+5x)=0⇔4x−10=0(4x−10)(24+5x)=0⇔4x−10=0 hoặc 24+5x=024+5x=0
+ 4x−10=0⇔4x=10⇔x=2,54x−10=0⇔4x=10⇔x=2,5
+ 24+5x=0⇔5x=24⇔x=−4,824+5x=0⇔5x=24⇔x=−4,8
Phương trình có nghiệm x = 2,5 và x = -4,8
b. (3,5−7x)(0,1x+2,3)=0⇔3,5−7x=0(3,5−7x)(0,1x+2,3)=0⇔3,5−7x=0hoặc 0,1x+2,3=00,1x+2,3=0
+ 3,5−7x=0⇔3,5=7x⇔x=0,53,5−7x=0⇔3,5=7x⇔x=0,5
+ 0,1x+2,3=0⇔0,1x=−2,3⇔x=−230,1x+2,3=0⇔0,1x=−2,3⇔x=−23
Phương trình có nghiệm x =0,5 hoặc x = -23
Giải các phương trình sau:
a) 2 x + 5 6 − 1 3 2 x + 5 x − 10 = 0 ;
b) 4 x − 1 x + 5 = x 2 − 25 ;
c) 3 x − 3 2 − x − 3 x + 2 4 = 0 ;
d) x x + 3 3 − x 4 x + 3 = 0 .
giải các phương trình sau 1, 2x² - 5x + 1 = 0 2, 4x² + 4x + 1 = 0
pt 1:
\(\Delta=\left(-5\right)^2-4.2.1=25-8=16\)
=> pt có 2 nghiệm
\(x=\dfrac{-\left(-5\right)+\sqrt{16}}{2.2}=\dfrac{9}{4}\)
\(x=\dfrac{-\left(-5\right)-\sqrt{16}}{2.2}=\dfrac{1}{4}\)
pt 2:
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Giải phương trình
a) (4x-10) ( 24+5x ) = 0
b) ( 2x - 1)2 + ( 2 - x ) ( 2x - 1 ) = 0
a) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-10=0\\24+5x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{24}{5}\end{cases}}\)
Vậy tập nghiệm của phuwong trình là : \(S=\left\{\frac{5}{2};-\frac{24}{5}\right\}\)
b) \(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-1+2-x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)
Vậy tập nghiệm của ptr là : \(S=\left\{\frac{1}{2};-1\right\}\)
Giải các phương trình sau: ( 5x - 4 )( 4x + 6 ) = 0
Ta có: ( 5x - 4 )( 4x + 6 ) = 0
Vậy phương trình đã cho có tập nghiệm là S = { - 3/2; 4/5 }.
[Lớp 8]
Bài 1. Giải phương trình sau đây:
a) \(7x+1=21;\)
b) \(\left(4x-10\right)\left(24+5x\right)=0;\)
c) \(\left|x-2\right|=2x-3;\)
d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)
Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:
\(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)
Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)
Bài 4. Giải bài toán bằng cách lập phương trình:
Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút.
Tính quãng đường AB.
Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.
a) Chứng minh: ΔHAC đồng dạng với ΔABC;
b) Chứng minh AH2=AD.AB;
c) Chứng minh AD.AB=AE.AC;
d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)
Bài 4 :
24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ
Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0
Suy ra quãng đường AB là 36x(km)
Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)
Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)
Ta có phương trình:
\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)
Vậy quãng đường AB dài 36.2 = 72(km)
Bài 3 :
\(A = -x^2 + 2x + 9 = -(x^2 -2x - 9) \\= -(x^2 - 2x + 1 + 10) = -(x^2 -2x + 1)+ 10\\=-(x-1)^2 + 10\)
Vì : \((x-1)^2 \geq 0\) ∀x \(\Leftrightarrow -(x-1)^2 \)≤ 0 ∀x \(\Leftrightarrow -(x-1)^2 + 10\) ≤ 10
Dấu "=" xảy ra khi và chỉ khi x - 1 = 0 ⇔ x = 1
Vậy giá trị nhỏ nhất của A là 10 khi x = 1
Bài 1: Giải phương trình và bất phương trình sau: 1. 5.(2-3x). (x-2) = 3.( 1-3x) 2. 4x^2 + 4x + 1= 0 3. 4x^2 - 9= 0 4. 5x^2 - 10=0 5. x^2 - 3x= -2 6. |x-5| - 3= 0
Giải các phương trình sau:
a) 4 x + 2 5 − 5 x − 19 2 10 = 3 x − 2 4 − 5 ;
b) 2 x − 1 + 3 3 − 9 x − 1 4 = 3 2 x + 1 5 − 1 .
Giải các phương trình sau
x^3 + 5x - 6 = 0
4x^2 - 12x = -5
29 - x / 2011 + 27 - x / 2013 + 25 - x / 2015 = 24 - x / 2016 - 2
giải giùm nha
\(x^3-x^2+x^2-x+6x-6=0\Leftrightarrow\left(x-1\right)\left(x^2-x+6\right)=0\Leftrightarrow\left(x-1\right)=0\Leftrightarrow x=2;x^2-x+6>0\)
\(4x^2-12x+9=9-5\Leftrightarrow\left(2x-3\right)^2-4=0\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\Leftrightarrow x=\frac{1}{2};x=\frac{5}{2}\)
khó ( x =2040)