Sắp xếp các đa thức theo luỹ thừa giảm dần của biến rồi tính:
a) ( 5 x 2 - 3 x 3 +15 - 9x): (5 - 3x);
b) ( -4x 2 + x 3 - 20 + 5x) : (x - 4).
Thu gọn đa thức sau rồi sắp xếp theo luỹ thừa giảm dần của biến P(x) =2x³+5x⁴+x²-x³-3x⁴+2022+3x²-x³
Ta có:
\(P\left(x\right)=2x^3+5x^4+x^2-x^3-3x^4+2022+3x^2-x^3\)
\(P\left(x\right)=\left(5x^4-3x^4\right)+\left(2x^3-x^3-x^3\right)+\left(x^2+3x^2\right)+2022\)
\(P=2x^4+4x^2+2022\)
Sắp xếp các đa thức theo luỹ thừa giảm dần của biến rồi tính:
a) ( - x 2 + 6 x 3 - 26x + 21): (3 - 2x);
b) ( 2 x 4 - 13 x 3 -15 + 5x + 21 x 2 ): (4x - x 2 - 3).
a) Kết quả -3 x 2 – 4x + 7. b) Kết quả -2 x 2 + 5x + 5.
Bài 1: Cho hai đa thức:
P(x) = x2 + 5x4 – 3x3 + x2 - 5x4 + 3x3 – x + 5
Q(x) = x - 5x3– x2 + 5x3 - x2 + 3x – 1
a) Thu gọn rồi sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến
Bài 2
Cho đa thức P(x)=x6+3-x-2x2-x5
a) Sắp xếp các hạng tử của P(x) theo luỹ thừa giảm dần của biến x?
b) Tính giá trị của P(x) khi x=2
c) Tìm nghiệm của đa thức P(x)?
a) \(P\left(x\right)=x^6-x^5-2x^2-x+3\)
b) Thay x = 2 ta có:
\(P\left(2\right)=2^6-2^5-2.2^2-2+3=64-32-8-2+3=25\)
xắp xếp các đá thức theo luỹ thừa giảm dần của biến rồi thực hiện phép tính (x^5-x^2-3x^4+3x+5x^3-5): (5+x^2-3x)
\(\dfrac{x^5-3x^4+5x^3-x^2+3x-5}{x^2-3x+5}\)
\(=\dfrac{x^3\left(x^2-3x+5\right)-\left(x^2-3x+5\right)}{x^2-3x+5}\)
\(=x^3-1\)
Sắp xếp các đa thức theo lũy thừa giảm dần của biến rồi làm phép chia: x 3 - 7 x + 3 - x 2 : ( x - 3 ) .
sắp xếp đa thức theo luỹ thừa giảm dần
(x^3 - 7x + 3 - x^2) : (x- 3)
\(x^3-7x+3-x^2\)
\(=x^3-x^2-7x+3\)
Sắp xếp : (x3 - x2 - 7x + 3 ) : ( x - 3)
Áp dụng quy tắc Horner , ta có :
Vậy , ta có : x3 - x2 - 7x + 3 = ( x - 3)( x2 + 2x - 1)
Hay , thương là : x2 + 2x - 1
sắp xếp các đa thức theo luỹ thừa giảm dần của biên rồi làm phép chia :
(3x5-x2+2x3-6x4+2):(3x2+2)
\(3x^5-x^2+2x^3-6x^4+2=3x^5-6x^4+2x^3-x^2+2 \)
Có : \(\frac{3x^5-6x^4+2x^3-x^2+2}{3x^2+2}=\frac{x^3.\left(3x^2+2\right)-6x^4-x^2+2}{3x^2+2}=\frac{...-3x^2.2x^2-4x^2+3x^2+2}{3x^2+2}\)
\(=\frac{...-2x^2.\left(3x^2+2\right)+\left(3x^2+2\right)}{3x^2+2}=\frac{\left(x^3-2x^2+1\right).\left(3x^2+2\right)}{3x^2+2}=x^3-2x^2+1\)
Bài 1. Cho hai đa thức: A(x) = 5x5 + 2x + 3x3 - 3 – 2x4 - 4,5x5 và
B(x) = 4x4 - 3x3 - 1 + 2x4 + 3x2 – x – 0,5x5
a/ Thu gọn, sắp xếp các hạng tử của đa thức theo luỹ thừa giảm dần của biến x
b/ Tìm bậc, hệ số cao nhất, hệ số tự do của A(x)
c/ Tính: A(x) + B(x) ; B(x) - A(x) ;
d/ Tìm C(x) và D(x) biết C(x) - A(x) = - 7x3 và D(x) + B(x) = -7x3 + x2 – 1
a: \(A\left(x\right)=0.5x^5-2x^4+3x^3+2x-3\)
\(B\left(x\right)=-0.5x^5+6x^4+3x^3+3x^2-x-1\)
b: Bậc 5
Hệ số cao nhất 0,5
Hệ số tự do là -3
c: \(A\left(x\right)+B\left(x\right)=4x^4+6x^3+3x^2+x-4\)
\(A\left(x\right)-B\left(x\right)=x^5-8x^4-3x^2+3x-2\)
=>B(x)-A(x)=-x^5+8x^4+3x^2-3x+2