Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Iam clever and lucky
Xem chi tiết
Haruhiro Miku
12 tháng 5 2018 lúc 14:06

Giải:

Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:

ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm). 

Wall HaiAnh
12 tháng 5 2018 lúc 14:08

Trả lời

Theo đề ra ta có:

a+b+c=0

\(\Rightarrow\)ab+2ab+3ac=-a(a+c)-2c(a+c)+3ac

          =\(-a^2-ac-2ac-2ac^2+3ac\)

           \(=-\left(a^2+2c^2\right)\le0\)

Vậy nếu a+b+c=0 thì \(ab+2bc+3ac\le0\left(đpcm\right)\)

I - Vy Nguyễn
21 tháng 3 2020 lúc 17:38

Ta có : a + b + c = 0

\( \implies\) b + c = - a ; a + b = - c 

Ta có : ab + 2bc + 3ca 

= ab + 2bc + ca + 2ca 

= ( ab + ca ) + ( 2bc + 2ca )

= a ( b + c ) + 2c ( a + b )

= a ( - a ) + 2c ( - c ) 

= - a2 - 2c2 

= - ( a2 + 2c2 ) ( * )

Mà : a2 \(\geq\)  0 ; 2c2 \(\geq\)  0 

\( \implies\)  a2 + 2c2 \(\geq\)  0 ( ** )

Từ ( * ) ; ( ** ) 

\( \implies\)  - ( a2 + 2c2 )  \(\leq\)  0 

\( \implies\) ab + 2bc + 3ca  \(\leq\)  0 

Khách vãng lai đã xóa
kudo shinichi
Xem chi tiết
Ngô Tấn Đạt
25 tháng 2 2018 lúc 11:56

\(ab+2bc+3ac\\ =\left(ab+ac\right)+\left(2bc+2ac\right)\\ =a\left(b+c\right)+2c\left(a+b\right)\\ =a.\left(-a\right)+2c\left(-c\right)\\ =-a^2-2c^2\\ =-\left(a^2+2c^2\right)\le0\)

Nguyễn Thị Ngọc Mai
Xem chi tiết
Hoàng Phú Huy
18 tháng 3 2018 lúc 7:03

Ta có: a + b + c = 0 nên suy ra: b = – (a + c) thay vào biểu thức:

ab + 2bc + 3ca = -a.(a + c) – 2c.(a + c) + 3ac = -a² – ac – 2ac – 2c² + 3ac = – (a² + 2c²) ≤ 0 (đpcm).

hok tôts

Nhoc Nhi Nho
Xem chi tiết
Min
27 tháng 3 2016 lúc 9:19

vì a+b+c=0 nên a,b,c lớn nhất chỉ có thể bằng ko,nên ab+2bc+3ca chỉ có thể < hoặc bằng 0

Đinh Trọng Khoa
Xem chi tiết
Đoàn Đức Hà
19 tháng 5 2021 lúc 11:38

Ta có: 

\(\left(3a-2b+c\right)^2=9a^2+4b^2+c^2+2\left(3ac-6ab-2bc\right)\)

\(\Rightarrow b^2=9a^2+4b^2+c^2\)

(vì \(3a-3b+c=0\Leftrightarrow3a-2b+c=-b\)\(6ab+2bc-3ac=0\))

\(\Leftrightarrow9a^2+3b^2+c^2=0\)

\(\Leftrightarrow a=b=c=0\)

Khi đó: \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)

Khách vãng lai đã xóa
Nguyễn VIP 5 sao
19 tháng 5 2021 lúc 21:56

Ta có: 

(3a−2b+c)2=9a2+4b2+c2+2(3ac−6ab−2bc)

⇒b2=9a2+4b2+c2

(vì 3a−3b+c=0⇔3a−2b+c=−b6ab+2bc−3ac=0)

⇔9a2+3b2+c2=0

⇔a=b=c=0

Khi đó: P=(−1)2019+(−1)2020+(−1)2021=−1

Khách vãng lai đã xóa
Loan Trinh
Xem chi tiết
ILoveMath
Xem chi tiết
Akai Haruma
23 tháng 8 2021 lúc 16:22

Lời giải:

$N=a(b+3c)+5bc=(1-b-c)(b+3c)+5bc$

$=b+3c-b^2-3c^2+bc$

$-N=b^2+3c^2-bc-b-3c$

$-2N=2b^2+6c^2-2bc-2b-6c$

$\geq b^2+5c^2-2b-6c$

$=(b+c-1)^2+(2c-1)^2-2bc-2$

$\geq -2(bc+1)$

Mà $bc\leq \frac{(b+c)^2}{4}\leq \frac{1}{4}$

$\Rightarrow bc+1\leq \frac{5}{4}$

$\Rightarrow -2(bc+1)\geq \frac{-10}{4}$
$\Rightarrow -2N\geq \frac{-10}{4}$

$\Rightarrow N\leq \frac{5}{4}$

Vậy $N_{\max}=\frac{5}{4}$ khi $(a,b,c)=(0,\frac{1}{2}, \frac{1}{2})$

 

Chira Nguyên
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 8:24

`(2bc-2016)/(3c-2bc+2016)`

`=(-(3c-2bc+2016)+3c)/(3c-2bc+2016)`

`=-1+(3c)/(3c-2bc+2016)`

`(2b)/(3-2b+ab)

`=(2bc)/(3c-2bc+abc)`

`=(2bc)/(3c-2bc+2016)`

`(4032-3ac)/(3ac-4032+2016a)`

`=(-(3ac-4032+2016a)+2016a)/(3ac-4032+2016a)`

`=-1+(2016a)/(3ac-2abc+2016a)`

`=-1+(2016)/(3c-2bc+2016)`

`=>M=-1+(3c)/(3c-2bc+2016)-(2bc)/(3c-2bc+2016)-1+(2016)/(3c-2bc+2016)

`=>M=-2+(3c-2bc+2016)/(3c-2bc+2016)`

`=>M=-2+1`

`=>M=-1`

Yeutoanhoc
28 tháng 2 2021 lúc 8:25

`(2bc-2016)/(3c-2bc+2016)`

`=(-(3c-2bc+2016)+3c)/(3c-2bc+2016)`

`=-1+(3c)/(3c-2bc+2016)`

`(2b)/(3-2b+ab)`

`=(2bc)/(3c-2bc+abc)`

`=(2bc)/(3c-2bc+2016)`

`(4032-3ac)/(3ac-4032+2016a)`

`=(-(3ac-4032+2016a)+2016a)/(3ac-4032+2016a)`

`=-1+(2016a)/(3ac-2abc+2016a)`

`=-1+(2016)/(3c-2bc+2016)`

`=>M=-1+(3c)/(3c-2bc+2016)-(2bc)/(3c-2bc+2016)-1+(2016)/(3c-2bc+2016)`

`=>M=-2+(3c-2bc+2016)/(3c-2bc+2016)`

`=>M=-2+1`

`=>M=-1`

Nãy thiếu latex ạ sorry~~

Nhoc Nhi Nho
Xem chi tiết