Lời giải:
$N=a(b+3c)+5bc=(1-b-c)(b+3c)+5bc$
$=b+3c-b^2-3c^2+bc$
$-N=b^2+3c^2-bc-b-3c$
$-2N=2b^2+6c^2-2bc-2b-6c$
$\geq b^2+5c^2-2b-6c$
$=(b+c-1)^2+(2c-1)^2-2bc-2$
$\geq -2(bc+1)$
Mà $bc\leq \frac{(b+c)^2}{4}\leq \frac{1}{4}$
$\Rightarrow bc+1\leq \frac{5}{4}$
$\Rightarrow -2(bc+1)\geq \frac{-10}{4}$
$\Rightarrow -2N\geq \frac{-10}{4}$
$\Rightarrow N\leq \frac{5}{4}$
Vậy $N_{\max}=\frac{5}{4}$ khi $(a,b,c)=(0,\frac{1}{2}, \frac{1}{2})$