Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lam Anh Ngọc
Xem chi tiết
Lưu Nguyễn Hà An
8 tháng 1 lúc 5:40

ko đăng hình đc nhé bạn.

Lam Anh Ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 2 2017 lúc 15:37

Đồ thị của hàm số y: y =  3 x  − 2 nhận được từ đồ thị của hàm số y =  3 x  bằng phép tịnh tiến song song với trục tung xuống dưới 2 đơn vị (H. 49)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 10 2017 lúc 13:41

y = 2 –  3 x  = −( 3 x  − 2)

Ta có đồ thị của hàm số y = 2 −  3 x  đối xứng với đồ thị cua hàm số y =  3 x  – 2 qua trục hoành (H.52).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2019 lúc 18:27

Đồ thị của hàm số y =  3 x  + 2 nhận được từ đồ thị của hàm số y =  3 x  bằng phép tịnh tiến song song với trục tung lên phía trên 2 đơn vị (H. 50)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 11 2018 lúc 11:52

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, đồ thị của hàm số y = | 3 x  − 2| gồm:

- Phần đồ thị của hàm số y =  3 x  − 2 ứng với  3 x  – 2 ≥ 0 (nằm phía trên trục hoành).

- Phần đối xứng qua trục hoành của đồ thị hàm số y =  3 x  − 2 ứng với  3 x  – 2 < 0.

Vậy đồ thị của hàm số y = | 3 x − 2| có dạng như hình 51.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 4 2019 lúc 5:51

a) Đồ thị của hàm số y: y = 3 x  − 2 nhận được từ đồ thị của hàm số y =  3 x  bằng phép tịnh tiến song song với trục tung xuống dưới 2 đơn vị (H. 49)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

b) Đồ thị của hàm số y =  3 x  + 2 nhận được từ đồ thị của hàm số y =  3 x  bằng phép tịnh tiến song song với trục tung lên phía trên 2 đơn vị (H. 50)

Giải sách bài tập Toán 12 | Giải sbt Toán 12

c) Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, đồ thị của hàm số y = | 3 x  − 2| gồm:

- Phần đồ thị của hàm số y =  3 x  − 2 ứng với  3 x  – 2 ≥ 0 (nằm phía trên trục hoành).

- Phần đối xứng qua trục hoành của đồ thị hàm số y =  3 x  − 2 ứng với  3 x  – 2 < 0.

Vậy đồ thị của hàm số y = | 3 x  − 2| có dạng như hình 51.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có đồ thị của hàm số y = 2 −  3 x  đối xứng với đồ thị cua hàm số y =  3 x  – 2 qua trục hoành (H.52).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
12 tháng 9 2023 lúc 23:22

a)

- Vẽ đồ thị hàm số \(y = 0,5x\)

Cho \(x = 1 \Rightarrow y = 0,5.1 = 0,5\). Ta vẽ điểm \(A\left( {1;0,5} \right)\)

Đồ thị hàm số \(y = 0,5x\) là đường thẳng đi qua điểm \(O\left( {0;0} \right)\) và \(A\left( {1;0,5} \right)\).

- Vẽ đồ thị hàm số \(y =  - 3x\)

Cho \(x = 1 \Rightarrow y =  - 3.1 =  - 3\). Ta vẽ điểm \(B\left( {1; - 3} \right)\)

Đồ thị hàm số \(y =  - 3x\) là đường thẳng đi qua điểm \(O\left( {0;0} \right)\) và \(B\left( {1; - 3} \right)\).

- Vẽ đồ thị hàm số \(y = x\)

Cho \(x = 1 \Rightarrow y = 1\). Ta vẽ điểm \(C\left( {1;1} \right)\)

Đồ thị hàm số \(y = x\) là đường thẳng đi qua điểm \(O\left( {0;0} \right)\) và \(C\left( {1;1} \right)\).

b) Ta thấy cả ba đồ thị đều đi qua gốc tọa độ \(O\left( {0;0} \right)\) nên có dạng \(y = ax\).

- Ở đồ thị a, đồ thị hàm số đi qua điểm \(A\left( {1;2} \right)\) nên ta có: \(2 = a.1 \Rightarrow a = 2\).

Do đó, đồ thị a là đồ thị của hàm số \(y = 2x\).

- Ở đồ thị b, đồ thị hàm số đi qua điểm \(B\left( { - 2;2} \right)\) nên ta có: \(2 = a.\left( { - 2} \right) \Rightarrow a = 2:\left( { - 2} \right) =  - 1\).

Do đó, đồ thị b là đồ thị của hàm số \(y =  - x\).

- Ở đồ thị c, đồ thị hàm số đi qua điểm \(C\left( {2; - 1} \right)\) nên ta có: \( - 1 = a.2 \Rightarrow a = \left( { - 1} \right):2 = \dfrac{{ - 1}}{2}\).

Do đó, đồ thị b là đồ thị của hàm số \(y = \dfrac{{ - 1}}{2}x\).

Chau Pham
Xem chi tiết
Nguyễn Hoàng Minh
4 tháng 12 2021 lúc 9:21

\(b,\text{PT hoành độ giao điểm: }2x+5=-x+2\Leftrightarrow3x=-3\\ \Leftrightarrow x=-1\Leftrightarrow y=3\Leftrightarrow A\left(-1;3\right)\\ c,\text{PT 2 đt giao Ox: }\left\{{}\begin{matrix}y=0\Rightarrow x=-\dfrac{5}{2}\Rightarrow B\left(-\dfrac{5}{2};0\right)\\y=0\Rightarrow x=2\Rightarrow C\left(2;0\right)\end{matrix}\right.\\ \Rightarrow BC=OB+OC=\dfrac{5}{2}+2=\dfrac{9}{2}\\ \text{Gọi H là chân đường cao từ A tới BC}\\ \Rightarrow AH=\left|y_A\right|=3\\ \Rightarrow S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot3\cdot\dfrac{9}{2}=\dfrac{27}{4}\left(đvdt\right)\)

LiLy Nguyễn ( LoVeLy ArM...
Xem chi tiết