Chứng minh các bất đẳng thức sau: tan x > x + x 3 3 0 < x < π 2
Chứng minh các bất đẳng thức sau: tan x > x 0 < x < π 2
Xét hàm số y = f(x) = tanx – x trên khoảng (0; π/2)
Ta có: y’ = > 0 với ∀ x ∈ R.
⇒ hàm số đồng biến trên khoảng (0; π/2)
⇒ f(x) > f(0) = 0 với ∀ x > 0
hay tan x – x > 0 với ∀ x ∈ (0; π/2)
⇔ tan x > x với ∀ x ∈ (0; π/2) (đpcm).
Chứng minh các bất đẳng thức sau:
a) tanx > sinx, 0 < x < π/2
b)
với 0 < x < + ∞
a) Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0; π/2);
x ∈ [0;1/2)
Dấu “=” xảy ra khi x = 0.
Suy ra f(x) đồng biến trên nửa khoảng [0; π/2)
Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x ∈ [0; 1/2)
b) Xét hàm số h(x) trên [0; + ∞ )
Dấu “=” xẩy ra chỉ tại x = 0 nên h(x) đồng biến trên nửa khoảng [0; + ∞ ).
Vì h(x) = 0 nên
Hay
Xét hàm số trên f(x) trên [0; + ∞ );
Vì g(0) = 0 và g(x) đồng biến trên nửa khoảng [0; + ∞ ) nên g(x) ≥ 0, tức là f′(x) ≥ 0 trên khoảng đó và vì dấu “=” xảy ra chỉ tại x = 0 nên f(x) đồng biến trên nửa khoảng .
Mặt khác, ta có f(0) = 0 nên
Với mọi 0 < x < + ∞ .
Chứng minh các bất đẳng thức sau với x, y, z > 0
Chứng minh các bất đẳng thức sau:
1 + 1 2 x - x 2 8 < 1 + x < 1 + 1 2 x
với 0 < x < + ∞
Xét hàm số h(x) trên [0; + ∞ )
Dấu “=” xẩy ra chỉ tại x = 0 nên h(x) đồng biến trên nửa khoảng [0; + ∞ ).
Vì h(x) = 0 nên
Hay
Xét hàm số trên f(x) trên [0; + ∞ );
Vì g(0) = 0 và g(x) đồng biến trên nửa khoảng [0; + ∞ ) nên g(x) ≥ 0, tức là f′(x) ≥ 0 trên khoảng đó và vì dấu “=” xảy ra chỉ tại x = 0 nên f(x) đồng biến trên nửa khoảng .
Mặt khác, ta có f(0) = 0 nên
Với mọi 0 < x < + ∞
Chứng minh các bất đẳng thức sau: tanx > sinx, 0 < x < π /2
Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0; π /2);
x ∈ [0;1/2)
Dấu “=” xảy ra khi x = 0.
Suy ra f(x) đồng biến trên nửa khoảng [0; π /2)
Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x ∈ [0; 1/2)
Chứng minh các bất đẳng thức sau: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\left(\forall x,y>0\right)\)
Biến đổi tương đương:
\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã được chứng minh
Cách khác so với anh Nguyễn Việt Lâm
Ta có: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\) (đpcm)
Chứng minh bất đẳng thức sau
\(x^{10}-x^7+x^4-x^3+x^2+x>0\)
Giải bài toán sau bằng phương pháp chứng minh phản chứng: “Chứng minh rằng với mọi x, y, z bất kì thì các bất đẳng thức sau không đồng thời xảy ra x < y − z ; y < z − x ; z < x − y ”
Một học sinh đã lập luận tuần tự như sau:
(I) Giả định các đẳng thức xảy ra đồng thời.
(II) Thế thì nâng lên bình phương hai vế các bất đẳng thức, chuyển vế phải sang vế trái, rồi phân tích, ta được:
(x – y + z)(x + y – z) < 0
(y – z + x)(y + z – x) < 0
(z – x + y)(z + x – y) < 0
(III) Sau đó, nhân vế theo vế ta thu được:(x – y + z ) 2 (x + y – z)(-x + y + z) < 0 (vô lí)
Lý luận trên, nếu sai thì sai từ giai đoan nào?
A. (I)
B. (II)
C. (III)
D. Lý luận đúng
Chứng minh các đẳng thức sau(giả sử các biểu thức sau đều có nghĩa)
a) $\sin ^{4} x+\cos ^{4} x=1-2 \sin ^{2} x \cdot \cos ^{2} x$.
b) $\dfrac{1+\cot x}{1-\cot x}=\dfrac{\tan x+1}{\tan x-1}$.
c) $\dfrac{\cos x+\sin x}{\cos ^{3} x}=\tan ^{3} x+\tan ^{2} x+\tan x+1$.
\(a)sin^4x+cos^4x=1-2sin^2x\cdot cos^2x\)
\(\Leftrightarrow sin^4x+2sin^2x\cdot cos^2x+cos^4x=1\)
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2=1\)(luôn đúng)
a) VT=(sin2x + cos 2 x)2 - 2sin2 x . cos2 x = VP
b) VT= \(\dfrac{1+\dfrac{1}{tanx}}{1-\dfrac{1}{tanx}}\)=VP
c) VT= \(\dfrac{1}{cos^2x}+\dfrac{sinx}{cosx}.\dfrac{1}{cos^2x}=1+tan^2x+tanx.\left(1+tan^2x\right)=VP\)