Chứng minh rằng phương trình: x 5 − 5 x – 1 = 0 có ít nhất ba nghiệm
Chứng minh rằng phương trình x3 -3x2-1=0 có nghiệm x thuộc (3,4) và x > 1+\(\sqrt[5]{36}\)
Em 2k8 nên e k chắc :((
Đặt f(x) = x^3 - 3x^2 - 1 = 0 => f(x) liên tục trên (3;4)
x = 3 => f(3) = -1 ; x = 4 => f(4) = 15
=> f(3) . f(4) = -15 < 0 => tồn tại no x thuộc (3;4) để f(x) = 0 ( đpcm )
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
Lời giải:
a) $f(x)=x^5-3x+3$ liên tục trên $R$
$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$
Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$
Nghĩa là pt đã cho luôn có nghiệm.
b) $f(x)=x^5+x-1$ liên tục trên $R$
$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$
Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$
Hay pt đã cho luôn có nghiệm.
c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$
$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$
$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$
Hay pt đã cho luôn có nghiệm.
Cho phương trình: x2 - 2(m+1)x +m-4=0
a/ giải phương trình khi m=5
b/ chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m
c/ tìm m để phương trình có hai nghiệm trái dấu
d/ chứng minh rằng biểu thức M= x1(1-x2) + x2 (1-x1) không phụ thuộc vào m
Xin lựa a;b ... c;d e rỗng tuếch :>> (ko bt đúng ko nữa).
a, Thay m = 5 vào biểu thức ta đc
\(x^2-2\left(5+6\right)x+5-4=0\)
\(x^2-33x+1=0\)
\(\Delta=\left(-33\right)^2-4.1.1=1089-4=1085>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{33-\sqrt{1085}}{2};x_2=\frac{33+\sqrt{1085}}{2}\)
b, Ta có :
\(\Delta=\left(2m-2\right)^2-4\left(m-4\right)=4m^2-4-4m+16=4m^2-4m+12\)
\(=\left(4m^2-4m+1\right)+11\ge11\forall m\)
Vậy phuwong trình có 2 nghiệm phân biệt vs mọi x
1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF
Cho phương trình $x^{2}-(2m-1) x-5=0(1)(\mathrm{m}$ là tham số)
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt.
b) Tìm giá trị của $m$ để phương trình (1) hai nghiệm nguyên.
a, Để pt trên có 2 nghiệm pb thì \(\Delta>0\)
\(\Delta=4m^2-4m+1+20=\left(2m-1\right)^2+20>0\forall m\)( đpcm )
Câu a: Ta có \(\Delta\)= (1-2m)2-4.1.5= (2m-1)2+20>0 với mọi m
⇒Phương trình luôn có 2 nghiệm phân biệt với mọi m
Câu b:
Để phương trình có 2 nghiệm nguyên thì \(\left\{{}\begin{matrix}\Delta>0\left(luondung\right)\\S\in Z\\P\in Z\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}2m-1\in Z\\-5\in Z\left(tm\right)\end{matrix}\right.\)
Cho phương trình: x2 - 2(m-1)x + m - 5 = 0
1) Chứng minh rằng với mọi m phương trình luôn có 2 nghiệm phân biệt
2) Tìm m để phương trình có 2 nghiệm mà hiệu của chúng bằng 3
1) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m-5\right)\)
\(=\left(2m-2\right)^2-4\left(m-5\right)\)
\(=4m^2-8m+4-4m+20\)
\(=4m^2-12m+24\)
\(=4m^2-12m+9+15\)
\(=\left(2m-3\right)^2+15>0\forall m\)
Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m
2) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m-5\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1-x_2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_1=2m+1\\x_1-x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{2m+1}{2}\\x_2=x_1-3=\dfrac{2m+1}{2}-\dfrac{6}{2}=\dfrac{2m-5}{2}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_5=m-5\)
\(\Leftrightarrow\left(2m+1\right)\left(2m-5\right)=4\left(m-5\right)\)
\(\Leftrightarrow4m^2-10m+2m-5=4m-20\)
\(\Leftrightarrow4m^2-8m-5-4m+20=0\)
\(\Leftrightarrow4m^2-12m+15=0\)(vô lý)
Vậy: Không có giá trị nào của m để phương tình có hai nghiệm mà hiệu của chúng bằng 3
câu 1
cho 2(m-1)x +3= 2m-5
tìm m để phương trình trên bậc nhất một ẩn
b) với giá trị nào của m thì thì phương trình trên tương đương với phương trình sau :2x+5 =3(x+2)-1
câu 2 chứng tỏ rằng phương trình mx - 3 = 2m-x-1 luôn nhận x=2 là nghiệm với mọi m
câu 3
cho 2 số x,y khác 0 .chứng minh rằng \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
câu 1
cho 2(m-1)x +3= 2m-5
tìm m để phương trình trên bậc nhất một ẩn
b) với giá trị nào của m thì thì phương trình trên tương đương với phương trình sau :2x+5 =3(x+2)-1
câu 2 chứng tỏ rằng phương trình mx - 3 = 2m-x-1 luôn nhận x=2 là nghiệm với mọi m
câu 3
cho 2 số x,y khác 0 .chứng minh rằng \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
câu 1,
a, 2(m-1)x +3 = 2m -5
<=> 2x (m-1) - 2m +8 = 0 (1)
Để PT (1) là phương trình bậc nhất 1 ẩn thì: m - 1 \(\ne\)0 <=> m\(\ne\)1
b, giải PT: 2x +5 = 3(x+2)-1
<=> 2x + 5 -3x -6 + 1 =0
<=> -x = 0
<=> x = 0
Thay vào (1) ta được: -2m + 8 =0
<=> -2m = -8
<=> m = 4 (t/m)
vậy m = 4 thì pt trên tương đương.................
Chứng minh rằng phương trình: 2mx - 5 = -x + 6m - 2 luôn có một nghiệm x không phụ thuộc vào m.
\(2mx-5=-x+6m-2\)
\(\Leftrightarrow2m\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(2m+1\right)=0\)
=> phương trình luôn có một nghiệm là x=3
2mx - 5 = -x + 6m - 2
<=> 2mx - 5 + x - 6m + 2 = 0
<=> 2mx + x - 6m - 3 = 0
<=> 2m( x - 3 ) + 1( x - 3 ) = 0
<=> ( 2m + 1 )( x - 3 ) = 0
=> Phương trình có một nghiệm x = 3 không phụ thuộc vào m ( đpcm )
a. Chứng minh rằng: Với mọi giá trị của tham số m phương trình \(\left(1-m^2\right)x^3-6x=1\) luôn có nghiệm
b. CMR với mọi GT của tham số m phương trình \(\left(m^2+m+5\right)\left(3-x\right)^{2021}.x+x-4=0\) luôn có nghiệm
Thầy bày em phương pháp giải dạng này được ko ạ . Em cảm ơn nhiều
Tìm 2 giá trị của x để hàm \(f\left(x\right)\) nhận kết quả trái dấu là được.
a.
Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)
Hàm \(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=-1< 0\) (chọn \(x=0\) do nó làm triệt tiêu tham số m, thường sẽ ưu tiên chọn những giá trị x kiểu thế này. Ở câu này, có đúng 1 giá trị x khiến m triệt tiêu nên phải chọn thêm)
\(f\left(-1\right)=m^2-1+6-1=m^2+4>0\) với mọi m (để ý rằng ta đã có \(f\left(0\right)\) âm nên cần chọn x sao cho \(f\left(x\right)\) dương, mà \(-m^2\) nên ta nên chọn x sao cho nó chuyển dấu thành \(m^2\))
\(\Rightarrow f\left(0\right).f\left(-1\right)< 0;\forall m\)
\(\Rightarrow\) Hàm luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\) với mọi m
Hay với mọi m thì pt luôn luôn có nghiệm
b.
Đặt \(f\left(x\right)=\left(m^2+m+5\right)\left(3-x\right)^{2021}x+x-4\)
\(f\left(x\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=-4< 0\)
(Tới đây, nếu ta chọn tiếp \(x=3\) để triệt tiêu m thì cho \(f\left(3\right)=-1\) vẫn âm, ko giải quyết được vấn đề, nên ta phải chọn 1 giá trị khác. Thường trong những trường hợp xuất hiện \(m^2\) thế này, cố gắng chọn x sao cho hệ số của \(m^2\) dương (nếu cần \(f\left(x\right)\) dương, còn cần \(f\left(x\right)\) âm thì chọn x sao cho hệ số \(m^2\) âm). Ở đây dễ nhất là chọn \(x=2\) , vì khi đó \(\left(3-2\right)^{2021}=1\) vừa đảm bảo hệ số \(m^2\) dương vừa dễ tính toán, nếu chọn \(x=1\) cũng được thôi nhưng quá to sẽ rất khó biến đổi)
\(f\left(2\right)=\left(m^2+m+5\right).\left(3-2\right)^{2021}.2+2-4=2\left(m^2+m+5\right)-2\)
\(=2m^2+2m+8=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{15}{2}>0;\forall m\)
\(\Rightarrow f\left(0\right).f\left(2\right)< 0;\forall m\Rightarrow\) hàm luôn có ít nhất 1 nghiệm thuộc \(\left(0;2\right)\) với mọi m
Hay pt đã cho luôn có nghiệm với mọi m