Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shinichi
Xem chi tiết
Phương Anh Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2022 lúc 22:52

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔABH=ΔACK

Suy ra: AH=AK

b: Xét ΔKCB vuông tại K và ΔHBC vuông tại H có

BC chung

KB=HC

Do đó: ΔKCB=ΔHBC

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

=>ΔBIC cân tại I

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

c: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên AI là đường cao

d: Xét ΔABC có AK/AB=AH/AC

nên KH//BC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2017 lúc 17:33

Xét ΔAIK vuông tại K và ΔAIH vuông tại H có:

      AH = AK (theo phần a)

      AI chung

⇒ ΔAIK = ΔAIH (cạnh huyền – cạnh góc vuông).

⇒ góc IAK = góc IAH (hai góc tương ứng)

Vậy AI là tia phân giác của góc A.

subjects
Xem chi tiết
Như Nguyệt
Xem chi tiết
Edogawa Conan
23 tháng 4 2020 lúc 16:40

A B C H K I

a) Sửa đề: AH = AK

Xét t/giác ABH và t/giác ACE

có: AB = AC (gt)

 \(\widehat{AHB}=\widehat{AKC}=90^0\)(gt)

  \(\widehat{A}\) : chung

=> t/giác ABH = t/giác ACK (Ch - gn)

=> AH = AK (2 cạnh t/ứng)

b) Ta có: \(\widehat{ABI}+\widehat{IBC}=180^0\)(kề bù)

 \(\widehat{ACI}+\widehat{ICB}=180^0\)(kề bù)

Mà \(\widehat{ABI}=\widehat{ACI}\)(vì t/giác ABH = t/giác ACK)

=> \(\widehat{IBC}=\widehat{ICB}\) t/giác BIC cân tại I => IB = IC

Xét t/giác ABI và t/giác ACI

có: AB = AC (gt)

 BI = IC (gt)

AI : chung

=> t/giác ABI = t/giác ACI (c.c.c)

=> \(\widehat{BAI}=\widehat{CAI}\)(2 góc t/ứng)

=> AI là tia p/giác cảu góc A

b) Gọi O là giao giểm của AI và BC

Xét t/giác ABO và t/giác ACO

có: AB = AC (gt)

  AO: chung

  \(\widehat{BAO}=\widehat{OAC}\)(cmt)

=> t/giác ABO = t/giác ACO (c.g.c)

=> \(\widehat{AOB}=\widehat{AOC}\)(2 góc t/ứng)

Mà \(\widehat{AOB}+\widehat{AOC}=180^0\)(kề bù)

=> \(\widehat{AOB}=\widehat{AOC}=90^0\)

=> AO \(\perp\)BC  hay AO \(\perp\)BC

d) Ta cos: t/giác ABO = t/giác ACO (cmt)

=> BO = OC (2 cạnh t/ứng)

=> O là trung điểm của BC

DO A; I; O thẳng hàng => AI đi qua trung điểm của BC

Khách vãng lai đã xóa
doraemon
Xem chi tiết
nguyễn trí tâm
9 tháng 4 2020 lúc 0:38

I là giao BH, CK phải ko bạn

Xét tgABC cân tại A có BI vg AC và CI vg AB

->I là trực tâm tg ABC

->AI vg bc

->Gọi AI cắt BC tại L

->AL là dg cao đồng thời là đường trung tuyến(t/c tg cân)

->dpcm

Khách vãng lai đã xóa
Duy Nam
9 tháng 4 2020 lúc 21:26

Đề có sai k vậy

Khách vãng lai đã xóa
Trần Hà	Trang
11 tháng 4 2020 lúc 22:43

xét  ΔABC có BH , CK là 2 đg cao cắt nhau tại I => I là trực tâm => AI ⊥ BC mà  ΔABC cân ở A=> AI là trung tuyến =>đpcm

Khách vãng lai đã xóa
doraemon
Xem chi tiết
Hà Trần Minh Đoàn
8 tháng 4 2020 lúc 19:11

oooooooooooooooooooooooooooooooooooooooooooookkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Khách vãng lai đã xóa
Lynn Leenn
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 10:28

a: Xét ΔAMB và ΔAMC có 

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔAMB=ΔAMC

b: Xét ΔABH và ΔACK có

\(\widehat{BAH}\) chung

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

Mạnh=_=
1 tháng 3 2022 lúc 10:34

a, xét tam giác AMB và tam giác AMC có: AM chung

AB = AC do tam giác ABC cân tại A (gt)

góc BAM = góc CAM do AM là pg của góc BAC (gt)

=> tam giác AMB = tam giác AMC (c-g-c)

b, xét tam giác BKC và tam giác CHB có :BC chung

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc BKC = góc CHB = 90

=> tam giác BKC = tam giác CHB (ch-gn)

=> BH = CK (đn)

grak béo
Xem chi tiết
Tomoe
19 tháng 2 2020 lúc 16:20

a, xét tam giác AMB và tam giác AMC có: AM chung

AB = AC do tam giác ABC cân tại A (gt)

góc BAM = góc CAM do AM là pg của góc BAC (gt)

=> tam giác AMB = tam giác AMC (c-g-c)

b, xét tam giác BKC và tam giác CHB có :BC chung

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc BKC = góc CHB = 90

=> tam giác BKC = tam giác CHB (ch-gn)

=> BH = CK (đn)

Khách vãng lai đã xóa