Tìm x biết:
x - 8 =18
x=?
tìm [x] biết:
x- \(\dfrac{8}{5}\) < -6 < x
Ta có :
\(x-\dfrac{8}{5}< -6\\ \Rightarrow x< -6+\dfrac{8}{5}\\ \Rightarrow x< -\dfrac{22}{5}=-4\dfrac{2}{5}\\ \Rightarrow-6< x< -1\dfrac{2}{5}\\ \Rightarrow x=-5\)
Vậy...
Tìm [x], biết:
x - \(\dfrac{8}{5}\) < -6 < x
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{8}{5}< -6\\-6< x\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x< -6+\dfrac{8}{5}\\x>-6\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x< -\dfrac{22}{5}\\x>-6\end{matrix}\right.\\ \Rightarrow-6< x< -\dfrac{22}{5}\)
Tìm x,biết:
x(x+1)-(x-1)(x+2)=8
x(x+1)-(x-1)(x+2)=8
\(\Leftrightarrow\)\(x^2+x-x^2-2x+x+2=8\)
\(\Leftrightarrow0x=6\left(ptvn\right)\)
\(\Rightarrow S=\varnothing\)
tìm x biết:x-10/30+x-5/95=14-x/43+148-x/8
\(...\Rightarrow x+x+\dfrac{x}{43}+\dfrac{x}{8}=14+148+\dfrac{10}{30}+\dfrac{5}{95}\)
\(\Rightarrow\left(1+1+\dfrac{1}{43}+\dfrac{1}{8}\right)x=162+\dfrac{1}{3}+\dfrac{1}{19}\)
\(\Rightarrow\left(\dfrac{2.43.8}{43.8}+\dfrac{1.8}{43.8}+\dfrac{1.43}{43.8}\right)x=\dfrac{162.3.19}{3.19}+\dfrac{1.19}{3.19}+\dfrac{1.3}{19.3}\)
\(\Rightarrow\left(\dfrac{688}{344}+\dfrac{8}{344}+\dfrac{43}{344}\right)x=\dfrac{9234}{57}+\dfrac{19}{57}+\dfrac{3}{57}\)
\(\Rightarrow\dfrac{739}{344}x=\dfrac{9256}{57}\)
\(\Rightarrow x=\dfrac{9256}{57}:\dfrac{739}{344}=\dfrac{9256}{57}.\dfrac{344}{739}=\dfrac{\text{3184064}}{\text{42123}}\)
tìm x,y biết:
x/3=y/6 và 2x2-y2=-8
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{2x^2}{18}=\dfrac{y^2}{36}=\dfrac{2x^2-y^2}{18-36}=\dfrac{-8}{-18}=\dfrac{4}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4.3}{9}=\dfrac{4}{3}\\y=\dfrac{4.6}{9}=\dfrac{8}{3}\end{matrix}\right.\)
tìm x biết:x4-8=2x2-12x
\(x^4-8=2x^2-12x\)
\(\Rightarrow x^4-8-2x^2+12x=0\)
\(\Rightarrow x^4-8-2x\left(x-6\right)=0\)
Từ đây bạn khai triển bằng cách đặt nhân tử chung nhé!
Chúc bạn học tốt!
tìm x,y,z biết:x^3-y^3=6xy+8
Tìm x,y,z biết:
x/y=7/20;y/z=5/8 và 2x-5y+2z=100
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\)
nên \(\dfrac{x}{7}=\dfrac{y}{20}\)(1)
Ta có: \(\dfrac{y}{z}=\dfrac{5}{8}\)
nên \(\dfrac{y}{5}=\dfrac{z}{8}\)
hay \(\dfrac{y}{20}=\dfrac{z}{32}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
hay \(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
mà 2x-5y+2z=100
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x-5y+2z}{14-100+64}=\dfrac{100}{-22}=\dfrac{-50}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-50}{11}\\\dfrac{y}{20}=\dfrac{-50}{11}\\\dfrac{z}{32}=-\dfrac{50}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{350}{11}\\y=\dfrac{-1000}{11}\\z=\dfrac{-1600}{11}\end{matrix}\right.\)
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\Rightarrow\dfrac{x}{14}=\dfrac{y}{40}\Rightarrow\dfrac{2x}{28}=\dfrac{5y}{200}\) \(\left(1\right)\)
Lại có: \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{40}=\dfrac{z}{64}\Rightarrow\dfrac{5y}{200}=\dfrac{2z}{128}\) \(\left(2\right)\)
Kết hợp ( 1 ) và ( 2 ) ta có: \(\dfrac{2x+5y-2z}{28+200-128}=\dfrac{100}{100}=1\)
⇒ \(\dfrac{2x}{28}=1\Rightarrow x=\dfrac{1.28}{2}=14\)
⇒ \(\dfrac{5y}{200}=1\Rightarrow y=\dfrac{1.200}{5}=40\)
⇒ \(\dfrac{2z}{128}=1\Rightarrow z=\dfrac{1.128}{2}=64\)
fvklfksokodzsưkfposkfposzokokozspkfposfkkkfff;oeajfirepjfirjiod
tìm X biết:X+1+2+3+4+5-6-7-8-9=1-2-3-4-5+6+7+8+9
X + 1+2+3+4+5-6-7-8-9=1-2-3-4-5+6+7+8+9
X+ (-15) = 17
X = 17-(-15)
X = 32
vậy x = 32
tk nha
tìm các số thực x, y, z biết:
x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài