Vẽ hai đường thẳng: ( d 1 ): x + y = 2 và ( d 2 ): 2x + 3y = 0. Hỏi đường thẳng ( d 3 ): 3x + 2y = 10 có đi qua giao điểm của ( d 1 ) và ( d 2 ) hay không?
Cho hai đường thẳng d: 2x- y + 3= 0 và ∆: x+ 3y – 2= 0. Phương trình đường thẳng d’ đối xứng với d qua là:
A. 11x + 13y -2= 0
B.11x -2y = -13
C.13x-11y+3= 0
D.11x-13y+2= 0
Đáp án B
+Giao điểm của d và là nghiệm của hệ
+Lấy M(0; 3) thuộc d. Tìm M’ đối xứng M qua
Viết phương trình đường thẳng đi qua M(0;3) và vuông góc với :
3( x-0) -1( y-3) =0 hay 3x –y+3= 0
+Gọi H là giao điểm của và đường thẳng . Tọa độ H là nghiệm của hệ
+Ta có H là trung điểm của MM’. Từ đó suy ra tọa độ
Viết phương trình đường thẳng d’đi qua 2 điểm A và M’: điểm đi qua A( -1 ;1) , vectơ chỉ phương
=> vectơ pháp tuyến
Bài 1: Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua đường thẳng Δ, với:
a, d: 2x-y+1=0, Δ: 3x-4y+2=0
b, d: x-2y+4=0, Δ: 2x+y-2=0
c, d: x+y-1=0, Δ: x-3y+3=0
d, d: 2x-3y+1=0, Δ: 2x-3y-1=0
Bài 2: Lập phương trình đường thẳng d' đối xứng với đường thẳng d qua điểm I với:
a, d: 2x-y+1=0, I(2;1)
b, d: x-2y+4=0, I(-3;0)
c, d: x+y-1=0, I(0:3)
d, d: 2x-3y+1=0, I trùng O(0;0)
GIÚP EM VỚI Ạ!! EM ĐANG CẦN GẤP LẮM HUHUU T^T EM XIN CẢM ƠN!!!
mỗi bài, mk làm một phần ví dụ cho cậu nhé
nó đối xứng với nhau qua pt đường thẳng đenta,
trường hợp (d) ko cắt (đen ta) hay (d) cắt (đen ta) thì đều làm theo phương pháp sau
lấy 2 điểm bất kì thuộc (d) thì ta có như sau: A(0:1) là điểm thuộc đường thẳng (d)
lấy A' đối xứng với A qua (đen ta)
liên hệ tính chất đối xứng qua đường thẳng thì hiểu là AA' vuông góc (đen ta)
đồng thời giao điểm của AA' với (đen ta) là trung điểm của AA'
dễ dàng tìm đc giao điểm của (đen ta) với (d) là K(-2/5;1/5)
từ pt (đenta) thì dễ dàng =) vecto pháp tuyến của (đenta) =) (3;-4)
vì AA' vuông góc với (đenta) nên =) vectơ pháp tuyến của AA' là (4;-3)
áp véctơ pháp tuyến của AA' vào phương trình tổng quát đc: 4(x-0)-3(y-1)=0 (=) 4x-3y+3=0
gọi I là giao điểm của AA' và (đenta) =) I(-6/7;-1/7)
mà I là trung điểm của AA'
chắc chắn cậu sẽ dễ dàng suy ra điểm A'
mà K và A' thuộc (d') nên dễ dàng =) phương trình của (d')
Cho hai hàm số y = -2x và y = 1/2 .x Qua điểm (0; 2) vẽ đường thẳng song song với trục Ox cắt hai đường thẳng y = 1/2 .x và y = -2x lần lượt tại C và D. Diện tích tam giác COD là ......... (đvdt)
Trong mp Oxy cho điểm A (3;-1), đường thẳng d: x+y-1=0 và đường tròn ( C ) : x^2+y^2+2x-3y-1=0.tìm ảnh của A;d và (C) qua phép quay tâm O góc quay là -90°
(Bài này làm như thế nào vậy ạ???)
Cho hai đường thẳng (d2): 4x+3y-23=0 và (d1): y=1, biết đường thẳng d là đường phân giác góc tù tạo bởi hai đường thẳng d1 và d2. Phương trình đường thẳng d là?
A. 2x-y+9=0
B. -2x-y+9=0
C. 2x+y+9=0
D. 2x-y-9=0
trong mặt phẳng tọa độ Oxy, cho đường thẳng d:2x+y-3=0.
1, Tính góc giữa hai đường thẳng d và d', biết d' có phương trình x+3y+5=0
2, Tìm để đường thẳng △: mx+y+m-2=0 tạo đương thẳng d một góc 45o
Ta có các vecto pháp tuyến: \(\overrightarrow{n_d}=\left(2;1\right);\overrightarrow{n_{d'}}=\left(1;3\right);\overrightarrow{n_{\Delta}}=\left(m;1\right)\)
a/ \(cos\left(d;d'\right)=\frac{\left|2.1+3.1\right|}{\sqrt{2^2+1^2}.\sqrt{1^2+3^2}}=\frac{\sqrt{2}}{2}\Rightarrow\left(d;d'\right)=45^0\)
b/ Để \(\Delta\) cùng tạo với d 1 góc 45 độ thì \(\Delta//d'\) hoặc \(\Delta\perp d'\)
\(\Rightarrow\left[{}\begin{matrix}\frac{m}{1}=\frac{1}{3}\\1.m+3.1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{1}{3}\\m=-3\end{matrix}\right.\)
chọn và giải ra luôn nhé Trong mặt phẳng Oxy, phương trình đường thẳng d đi qua A(1;-2) và vuông góc với đường thẳng ∆:3x-2y+x=0 là A. 3x-2y-7=0 B.2x+3y+4=0 C.x+3y+5=0 D.2x+3y-3=0
1) Giải bằng đồ thị và bằng phương pháp đại số hệ phương trình:
-4x + y = 2
2x - y= -2
2) Tìm tọa độ giao điểm của hai đường thẳng (d1): 2x - y = 0 và (d2): -2x + 3y = -4 bằng đồ thị và phép tính.
3) Giải hệ phương trình:
y - |x| = 1
2x - y = 1
4) Tìm giá trị của m để đường thẳng y= mx + 2 đi qua giao điểm của hai đường thẳng (d1): 2x + 3y = 7 và (d2): 3x + 2y = 13.
5) Tìm m để hai phương trình đường thẳng (d1): 3x + my = 3 và (d2): mx + 3y = 3 song song với nhau
Cho hai đường thẳng (d): x+2y-1=0 và d’: x-3y+2=0.Số đo góc giữa hai đường thẳng là:
A,600
B,900
C,69034''
D,450
cos(d,d')=\(\dfrac{\left|1.1+2.\left(-3\right)\right|}{\sqrt{1^2+2^2}.\sqrt{1^2+\left(-3\right)^2}}\)= \(\dfrac{\sqrt{2}}{2}\)=450