Số các tập con 3 phần tử có chứa α , π của C = α , β , ξ , π , ρ , η , γ , σ , ω , τ là:
A. 8
B. 10
C. 12
D. 14
Số các tập con 4 phần tử có chứa α , π , ρ của C = α , β , ξ , π , ρ , η , γ , σ , ω , τ là:
A. 8
B. 10
C. 12
D. 7
Số tập hợp con chứa α, β của A = {α, β, γ, ε, μ } là
A. 6.
B. 8.
C. 10.
D. 12.
Đáp án: B
Số tập hợp con chứa α, β của A là: {α, β }; {α, β, γ };{α, β, ε};{α, β, μ };{α, β, γ, ε };{α, β, γ, μ };{α, β, ε, μ };{α, β, γ, ε, μ }
Cho sinα.cos(α+β) = sinβ với α+β ≠ π/2 + kπ,α ≠ π/2+lπ(k,l ϵ Z). Ta có:
A. tan(α+β)=2cotα
B. tan(α+β)=2cotβ
C. tan(α+β)=2tanβ
D.tan(α+β)=2tanα
Cho sinα = 8/17, sinβ = 15/17 với 0 < α < π/2, 0 < β <π/2. Chứng minh rằng: α + β = π/2
Phương trình 2 sin 2 2 x − 5 sin 2 x + 2 = 0 có hai họ nghiệm dạng x = α + kπ , x = β + kπ 0 < α , β < π . Khi đó tích αβ là
A. 5 π 2 36
B. 5 π 2 144
C. - 5 π 2 36
D. - 5 π 2 144
Cho hai số phức α = a + bi, β = c + di. Hãy tìm điều kiện của a, b, c, d để các điểm biểu diễn α và β trên mặt phẳng tọa độ: Đối xứng với nhau qua đường phân giác của góc phần tư thứ nhất và góc phần tư thứ ba
Cho góc α
thỏa mãn `π\2`<α<π,cosα=−\(\dfrac{1}{\sqrt{3}}\). Tính giá trị của các biểu thức sau:
a) sin(α+\(\dfrac{\text{π}}{6}\))
b) cos(α+$\frac{\text{π}}{6}$)
c) sin(α−$\frac{\text{π}}{3}$)
d) cos(α−$\frac{\text{π}}{6}$)
a: pi/2<a<pi
=>sin a>0
\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)
\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)
b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
c: \(sin\left(a-\dfrac{pi}{3}\right)\)
\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)
\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)
d: \(cos\left(a-\dfrac{pi}{6}\right)\)
\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)
Biết rằng α , β là các số thực thỏa mãn 2 β 2 α + 2 β = 8 2 - α + 2 - β . Giá trị của α + 2 β
A. 1
B. 2
C. 4
D. 3
Biết rằng α ; β là các số thực thỏa mãn 2 β 2 α + 2 β = 8 2 - α + 2 - β . Giá trị của α + 2 β bằng
A. 1
B. 2
C. 4
D. 3