Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2018 lúc 14:19

Chọn A

Hàm số f(x) = (x-6) x 2 + 4  xác định và liên tục trên đoạn [0;3].

Suy ra 

 với a là số nguyên và b, c là các số nguyên dương nên 

a = - 12, b = 3, c = 13. Do đó: S = a + b + c = 4.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 5 2017 lúc 11:23

Chọn C.

Đặt t = x - 8. Suy ra x = t + 8.  và

Do đó . Áp dụng ví dụ 13. Ta có:

Vậy .

Do đó .

Vậy a =112; b = 27 và a + b = 139.

 

 

Ngu Công
Xem chi tiết
_ Yuki _ Dễ thương _
Xem chi tiết
Tiểu_Thư_cute
23 tháng 12 2016 lúc 7:54

Ta có

Lập luận ra đpcm

Tiểu_Thư_cute
23 tháng 12 2016 lúc 8:01

Ta có :

a^xyz=(a^x)^yz=(bc)^yz

=b^yz.c^yz

=(b^y)^z.(c^z)^y

=(ca)^z.(ab)^y

=c^z.a^z.a^y.b^y

=(bc).a^z.a^y.(ca)

=a^2.a^y.a^z.(bc)

=a^2.a^y.a^z.a^x

=a^(x+y+z+2)

=>xyz=x+y+z+2

thanh an đoàn
Xem chi tiết
Đoàn Thị Thu Hương
Xem chi tiết
Thầy Giáo Toán
20 tháng 8 2015 lúc 9:38

Cho 3 **** kiểu gì nào?

a) a,b có thể là số vô tỉ. Ví dụ \(a=b=\sqrt{2}\) là vô tỉ mà ab và a/b đều hữu tỉ.

b) Trong trường hợp này \(a,b\) không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết  \(a=bt\),  với \(t\) là số hữu tỉ khác \(-1\). Khi đó \(a+b=b\left(1+t\right)=s\) là số hữu tỉ, suy ra \(b=\frac{s}{1+t}\) là số hữu tỉ. Vì vậy \(a=bt\)  cũng hữu tỉ.

c) Trong trường hợp này \(a,b\)  có thể kaf số vô tỉ. Ví dụ ta lấy \(a=1-\sqrt{3},b=3+\sqrt{3}\to a,b\) vô tỉ nhưng \(a+b=4\)  là số hữu tỉ và \(a^2b^2=\left(ab\right)^2=12\)  cũng là số hữu tỉ.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2019 lúc 6:28

Đáp án đúng : B

Nguyễn Thị Mai Lan
Xem chi tiết
Akai Haruma
15 tháng 9 2024 lúc 21:38

Lời giải:
a+1\vdots b$

$\Rightarrow 2b+5+1\vdots b$

$\Rightarrow 2b+6\vdots b$

$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$

Nếu $b=1$ thì $a=7$. Khi đó $a+7b=14$ không là snt (loại) 

Nếu $b=2$ thì $a=9$. Khi đó $a+7b = 23$ là snt (thỏa mãn) 

Nếu $b=3$ thì $a=11$. Khi đó $a+7b=32$ không là snt (loại) 

Nếu $b=6$ thì $a=17$. Khi đó $a+7b = 59$ là snt (thỏa mãn) 

Vậy.........

Luong Ngoc Quynh Nhu
Xem chi tiết
Luong Ngoc Quynh Nhu
13 tháng 7 2015 lúc 10:26

cho tớ mỗi dấu cộng là 1 ví dụ nhé .tớ chưa hiểu lém