Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 8 2017 lúc 2:58

Chọn B.

Với q = 3 ta có:  nên có một số hạng của dãy

Với q = 1/3 ta có:  nên có một số hạng của dãy.

Huyền Trâm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 12 2018 lúc 8:27

Chọn C.

Gọi q là công bội của cấp số. Khi đó ta có:

Suy ra:  39q4 – 82q3 -82q2 -82q + 39 = 0

(3q – 1)(q – 3)(13q2 + 16q + 13) = 0 q = 1/3, q = 3

kim taehyung
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2023 lúc 20:49

2: q=1/3

1: =>u1*q*u1*q^2=27 và u1*q^2+u1*q^4=90

=>u1^2*q^3=27 và u1*q^2(1+q^2)=90

=>q/1+q^2=3/10 và u1^2*q^3=27

=>3q^2+3-10q=0 và u1^2*q^3=27

=>q=3 hoặc q=1/3

Nguyễn Thanh Trúc
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 1 2022 lúc 18:21

\(u_7=u_1.q^6\Rightarrow q^6=729\Rightarrow q=\pm3\)

Với \(q=3\Rightarrow u_8=u_7.q=2187\)

Với \(q=-3\Rightarrow u_8=-3.729=-2187\)

Anh Le
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2020 lúc 22:02

\(u_3+u_7+...+u_{35}=u_1q^2+u_1q^6+...+u_1q^{34}\)

\(=u_1q^2\left(1+q^4+q^8+...+q^{32}\right)=u_1q^2.\frac{\left(q^4\right)^9-1}{q^4-1}=524286\)

2/ \(u_1^2+u_2^2+...+u_{20}^2=u_1^2+u_1^2q^2+u_1^2q^4+...+u_1^2q^{38}\)

\(=u_1^2\left(1+q^2+q^4+...+q^{38}\right)=u_1^2\frac{\left(q^2\right)^{20}-1}{q^2-1}=\frac{3^{20}-1}{2}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
6 tháng 3 2020 lúc 22:18

3/

\(u_1=2;u_n=18\)

\(u_1^2+u_2^2+...+u_n^2=484\)

\(\Leftrightarrow u_1^2+u_1^2q^2+...+u_1^2q^{2\left(n-1\right)}=484\)

\(\Leftrightarrow u_1^2\left(1+q^2+...+q^{2\left(n-1\right)}\right)=484\)

\(\Leftrightarrow1+q^2+...+q^{2\left(n-1\right)}=121\)

\(\Leftrightarrow\frac{q^{2n}-1}{q^2-1}=121\)

\(u_n=u_1q^{n-1}\Rightarrow q^{n-1}=\frac{u_n}{u_1}=9\Rightarrow q^n=9q\Rightarrow q^{2n}=81q^2\)

\(\Rightarrow\frac{81q^2-1}{q^2-1}=121\Rightarrow81q^2-1=121q^2-121\)

\(\Rightarrow q^2=3\Rightarrow q=\pm\sqrt{3}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
6 tháng 3 2020 lúc 22:22

4/

Do 3 số đã cho lập thành CSN nên ta có:

\(xy=3^2=9\Rightarrow y=\frac{9}{x}\)

\(x^4=y\sqrt{3}\)

\(\Rightarrow x^4=\frac{9\sqrt{3}}{x}\Rightarrow x^5=9\sqrt{3}=\sqrt{3}^5\)

\(\Rightarrow x=\sqrt{3}\)

\(\Rightarrow y=3\sqrt{3}\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2018 lúc 10:46

Chọn đáp án C.

Nguyễn Thùy Chi
Xem chi tiết
Akai Haruma
27 tháng 5 2023 lúc 0:03

Lời giải:
Gọi $d$ là công sai và số $S_1=n$. Ta có:
$S_2=S_1+d=n+d$

$S_3=S_2+d=S_1+2d=n+2d$

$\Rightarrow S_3-S_2=d$

Hay $9=d$. Khi đó:

$S_2=n+d\Rightarrow n=S_2-d=4-9=-5$

Khi đó:

$S_5=n+(5-1)d=-5+4.9=31$

 

Tuân Wai
Xem chi tiết
Lê Song Phương
22 tháng 10 2023 lúc 21:58

Xét hàm số \(f\left(x\right)=\dfrac{x^{2022}+3x+16}{x^{2021}-x+11}\), ta cần cm

 \(f\left(x\right)\ge x\) (*)

Thật vậy, (*) \(\Leftrightarrow x^{2022}+3x+16\ge x^{2022}-x^2+11x\)

\(\Leftrightarrow x^2-8x+16\ge0\)

 \(\Leftrightarrow\left(x-4\right)^2\ge0\) (luôn đúng)

Vậy \(f\left(x\right)\ge x,\forall x\)

\(\Rightarrow u_{n+1}=f\left(u_n\right)\ge u_n\) nên \(\left(u_n\right)\) là dãy tăng.