\(\left(x^2_{ }+1\right)\left(x-3\right)-\left(x-3\right)\left(x^2-1\right)\)
rút gọn biểu thức
Rút gọn các biểu thức sau:
a/ \(\left(x-2y^{ }\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
b/ \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
a: \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
\(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
\(=2x^2-4xy+\dfrac{15}{4}y^2\)
b: \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
\(=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)
\(=2x^2+2x+13-2x^2+2\)
=2x+15
a) \(=x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2=2x^2-4xy+\dfrac{15}{4}y^2\)
b) \(=x^2-4x+4+x^2+6x+9-2x^2+2\)
\(=2x+15\)
a; \(\left(x-2y\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
= \(x^2-4xy+4y^2+x^2-\dfrac{1}{4}y^2\)
= \(2x^2-4xy+\dfrac{15}{4}y^2\)
b; \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
= \(x^2-4x+4+x^2+6x+9-2x^2+2\)
= \(2x+15\)
Rút gọn các biểu thức sau
a, \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
a: \(2x\left(2x-1\right)^2-3x\left(x+3\right)\left(x-3\right)-4x\left(x+1\right)^2\)
\(=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)
\(=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)
\(=x^3-16x^2+25x\)
Rút gọn các biểu thức sau:
A= \(3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
B= \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)
C= \(3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
D= \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
E= \(\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)
\(A=3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=3x+6\sqrt{x}-\left(x-1\right)\)
\(=3x+6\sqrt{x}-x+1\)
\(=2x+6\sqrt{x}+1\)
\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)
\(=x+3\sqrt{x}+\sqrt{x}+3-2\left(x-2\sqrt{x}+1\right)\)
\(=x+4\sqrt{x}+3-2x+4\sqrt{x}-2\)
\(=-x+8\sqrt{x}+1\)
\(C=3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(=3x-3\sqrt{x}-2+\left(\sqrt{x^2}-1\right)\)
\(=3x-3\sqrt{x}-2+x-1\)
\(=4x-3\sqrt{x}-3\)
\(D=\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
\(=x-9-\left(2x-3\sqrt{x}-2\right)\)
\(=x-9-2x+3\sqrt{x}+2\)
\(=-x+3\sqrt{x}-7\)
\(E=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-2\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)
\(=\sqrt{x^2}-2^2-2\left(2x+4\sqrt{x}-\sqrt{x}-2\right)\)
\(=x-4-2\left(2x+3\sqrt{x}-2\right)\)
\(=x-4-4x-6\sqrt{x}+4\)
\(=-3-6\sqrt{x}\)
Rút gọn các biểu thức sau:
a/\(\left(x+\dfrac{1}{3}x+\dfrac{1}{9}\right)\left(x-\dfrac{1}{3}\right)-\left(x-\dfrac{1}{3^{ }}\right)^2\)
b/\(\left(x_{ }^2-2\right)^3-x\left(x+1\right)\left(x-1\right)+x\left(x-3\right)\)
MẤY BẠN GIÚP MK VS Ạ AI NHANH MK VOTE NHA
a) \(=x^3-\dfrac{1}{27}-x^2+\dfrac{2}{3}x-\dfrac{1}{9}=x^3-x^2+\dfrac{2}{3}x-\dfrac{2}{27}\)
b) \(=x^6-6x^4+12x^2-8-x^3+x+x^2-3x=x^6-6x^4-x^3+13x^2-2x-8\)
Rút gọn biểu thức bằng cách nhanh nhất
\(\left(x-1\right)^3+4\left(x+1\right)\left(1-x\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(\left(x-1\right)^3+4\left(x+1\right)\left(1-x\right)+3\left(x-1\right)\left(x^2+x+1\right).\)
\(=\left(x-1\right)^3+4\left(x+1\right)\left(1-x\right)+3\left(x-1\right)^3.\)
\(=\left(x-1\right)^3+4\left(1-x^2\right)+3\left(x-1\right)^3.\)
\(=\left(x-1\right)^3+3\left(x-1\right)^3+4\left(1-x^2\right)\)
\(=4\left(x-1\right)^3+4\left(1-x^2\right)\)
\(=4\left[\left(x-1\right)^3+\left(1-x^2\right)\right]\)
rút gọn biểu thức \(\left(x-3\right)\left(x^2+3x+9\right)-\left(2x-1\right)^2\)
\(=x^3-27-4x^2+4x-1=x^3-4x^2+4x-28\)
Rút gọn biểu thức \(B=\left(\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2\right):\left(\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}\right)\)
Rút gọn biểu thức:
\(\left(x-1\right)^2-2\left(x-2\right)\left(x+2\right)-3\left(x+2\right)^3\)
\(=\left(x-1\right)^2-\left(x+2\right)\left[2\left(x-2\right)+3\left(x+2\right)^2\right]\)
\(=x^2-2x+1-\left(x+2\right)\left[2x-4+3\left(x^2+4x+4\right)\right]\)
\(=x^2-2x+1-\left(x+2\right)\left(3x^2+14x+8\right)\)
\(=x^2-2x+1-\left(3x^3+6x^2+14x^2+28x+8x+16\right)\)
\(=-3x^3-21x^2-38x-15\)
Rút gọn biểu thức: \(A = {\log _2}\left( {{x^3} - x} \right) - {\log _2}\left( {x + 1} \right) - {\log _2}\left( {x - 1} \right)\,\,\,\,\left( {x > 1} \right).\)
\(A=log_2\left(x^3-x\right)-log_2\left(x+1\right)-log_2\left(x-1\right)\)
\(=log_2\left(\dfrac{x^3-x}{x+1}\right)-log_2\left(x-1\right)\)
\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{x+1}\right)-log_2\left(x-1\right)\)
\(=log_2\left(\dfrac{x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)=log_2x\)