Tam giác ABC có đường cao AH ( H thuộc cạnh BC). Biết B H = 3 c m , H C = 4 c m . So sánh độ dài AB và AC
A. AB > AC
B. AB < AC
C. AB = AC
D. Không so sánh được
Cho tam giác ABC có đường cao AH . GIẢ SỬ H thuộc CẠNH BC và AH^2= BH.CH. C/m tam giác ABC vuông
CẦN GẤP
Ta có \(AH^2=BH.CH\Rightarrow\frac{BH}{AH}=\frac{AH}{CH}\)
Từ đó ta có \(\Delta BHA\sim\Delta AHC\left(c-g-c\right)\Rightarrow\widehat{BAH}=\widehat{ACH}\)
Vậy thì \(\widehat{BAC}=\widehat{BAH}+\widehat{HAC}=\widehat{ACH}+\widehat{HAC}=90^o\)
Suy ra tam giác ABC vuông tại A.
Cho tam giác ABC vuông tại A,đường cao AH (H thuộc BC) Biết AB=6cm,AC=8cm a c/m tam giác ABC đồng dạng tam giác HBA b Tính AH,BC
a) Xét ΔABC và ΔHBA có
chung góc B
BAC = AHC (=90°)
=> ΔABC ∽ ΔHBA(gg)
Cho Tam giác ABC vuông tại A có đường cao AH ( H thuộc BC), kẻ HD vuông góc AC tại D ( D thuộc AC). a) C/m tam giác DAH đồng dạng Tam giác HAC. b) Gọi O là trung điểm AB, OC cắt AH, HD tại K và I. C/m HI= ID. c) C/m AD.AC=BH.HC d) C/m B, K, D thẳng hàng
cho tam giác ABC vẽ đường cao AH(H thuộc BC).trên nửa mặt phẳng bờ là đường thẳng chứa cạnh AC không chứa điểm B.vẽ tam giác ADC sao cho AD=BC,CD=AB.
a) c/minh rằng tam giác ADC=tam giác CBA
b) c/m DC//AB
c) c/m AH vuông góc với AD
Cho tam giác ABC(AB<AC) có 3 góc nhọn, kẻ đường cao AH (H thuộc BC). Từ H kẻ HD vuông góc AB và HE vuông góc AC (D thuộc AB, E thuộc AC)
a) C/m: tam giác ADH đồng dạng AHB
b)C/m: AD.AB=AE.AC
a: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
góc DAH chung
=>ΔADH đồg dạng vơi ΔAHB
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đường cao
nên AE*AC=AH^2
=>AE*AC=AD*AB
a) Chứng minh rằng tứ giác $APMQ$ nội tiếp một đường tròn.
Ta có: MP vuông góc AB (gt)
=) Góc MPA = 90độ (1)
Lại có: MQ vuông góc AC (gt)
=) Góc MQA = 90 độ (2)
Từ (1) và (2) =) góc MPA + góc MQA = 180độ
Mà 2 góc ở vị trí đối nhau
=) Tứ giác APMQ nội tiếp
Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH
a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC
b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH
Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .
Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông.
Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng:
a) Tam giác AHB đồng dạng với tam giác CHA .
b) BAC = 90o
Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC
Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng
Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng :
a) BH.BD=BK.BC
b) CH.CE=CK.CB
c) BH.BD+CH.CE=BC2
Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng :
a) AB.AE=AC.HC
b) BC. AK=AC.HC
c) AB.AE+AD.AK=AC2
sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu
cho tam giác ABC vg tại A, đg cao AH. Gọi BQ lần lượt là trung điểm của BH và AH.CMR
: a. tam giac ABH đồng dang vs tam giác CAH
b. AH.HP= HB.HQ
c. Tam giác ABC đồng dạng với tam giác CAQ
Cho tam giác ABC vuông tại A, biết AB=3cm,AC=4cm;đường cao AH(H thuộc cạnh BC), đường phân giác BD(D thuộc cạnh AC).Gọi I là giao điểm của AH và BD. a) C/m:Tam giác ABD ~ tam giác HBI b) C/m:Tam giác AID là tâm giác cân
a: Xet ΔABD vuông tại A và ΔHBI vuông tại H có
góc ABD=góc HBI
=>ΔABD đồng dạng với ΔHBI
b: góc AID=góc BIH=góc ADB=góc ADI
=>ΔADI can tại A
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH H thuộc BC. Trên cạnh BC lấy điểm D sao cho BD = BA
a/ C/m: Tam giác ABD cân và AD là tia phân giác của góc HAC
b/ Kẻ DK vuông góc với AC (K thuộc AC) C/m AK = AH
cho tam giác ABC vuông tại A.Đường trung tuyến AH,đường cao AM.(H thuộc BC,M thuộc BC)
a)chứng minh tam giác ABH đồng dạng với tam giác ABC
b)chứng minh AH*AH=BH*CH
c)tính diện tích tam giác AMH biết BH=4cm,CH=9cm.
Đường trung tuyến AM đường cao AH mới đúng chứ bạn
nếu AH là đường cao, AM là đường trung tuyến mới đứng chứ!nếu vậy thì giải thế này:
a)Xét tam giác ABH và tam giác CBA
ta có góc BAC=góc AHB= 90 độ
góc B chung
Suy ra tam giác ABH đồng dạng tam giác CBA
b)vì tam giác ABH đồng dạng với tam giác CBA
GÓC BAH=GÓC ACB
xét tam giác AHB và tam giác CHA
ta có góc AHB=góc AHC=90 độ
góc BAH=góc ACH
Suy ra tam giác AHB đồng dạng với tam giác CHA
AH/HC = BH/AH
=> AH2=BH.CH
c)ta có BC=BH+CH=4+9=13
Mà AM =1/2BC=13. 1/2=6,5
ÁP dụng định lý PYTAGO vào tam giác AHM ta được:
AM2=AH2+HM2 =>HM2=AM2-AH2= 6,52-62=6.25
=>HM=2.5
Suy ra SAHM=(AH.HM) / 2 =(6 . 2,5) / 2 =7,5