Cho hình vẽ dưới dây, hãy chứng tỏ a//b
Hãy chứng tỏ trên hình vẽ dưới dây AB // CD
Ta có hình vẽ:
Kẻ tia Am là tia đối của AB
Ta có: BAE + EAm = 180o (kề bù)
=> 100o + EAm = 180o
=> EAm = 180o - 100o
=> EAm = 80o
Lại có: EAm + mAC = EAC
=> 80o + mAC = 120o
=> mAC = 120o - 80o
=> mAC = 40o
Vì mAC + ACD = 40o + 140o = 180o mà mAC và ACD là 2 góc trong cùng phía
=> Am // CD
Mà AB là tia đối của Am => AB // CD (đpcm)
Cho hình vẽ bên. Hãy chứng tỏ a //b//c
Cho hình dưới đây. Hãy chứng tỏ a // b bằng nhiều cách
C1: Ta có: A2 = 180o - 120o = 60o
Ta thấy: B1 = A2 = 60o
=> a//b (so le trong)
C2: Ta có: A2 = 60o như cách 1.
Ta có: B2 = 180o - 60o = 120o
Ta thấy: B2 + A2 = 120o + 60o = 180o
=> a//b (2 góc trong cùng phía)
C3: ta có: B2 = 120o như cách 2.
Ta thấy: B2 = A2 = 120o
=> a//b (đồng vị)
\(\widehat{A_2}=180^0-120^0=60^0\)
Ta có: \(\widehat{A_2}=\widehat{B_1}\)
mà hai góc này là hai góc ở vị trí so le trong
nên a//b
Cho hình vẽ dưới dây, biết a // b // c và B1 = 600, A1 = 1400. Hãy tính số đo các góc: C1, C2 và ABC.
Cho hình vẽ, biết:
a) A 2 ^ = 70 0 ; B ^ = 110 0 . Chứng tỏ rằng Ax//By
b) F ^ = H ^ 1 ; K ^ = H ^ 2 . Chứng tỏ rằng EF//IK
c) Cho hình vẽ, biết : M ^ 1 = 75 0 ; N ^ 1 = 105 0 ; P ^ 1 = 75 0 . Hãy kể tên các cặp đường thẳng song song và giải thích vì sao?
Cho hình vẽ, biết :
a) T a có: A ^ 1 = A ^ 2 = 70 0 (đối đỉnh).
Do đó A ^ 1 + B ^ = 70 0 + 110 0 = 180 0
Suy ra Ax//By (vì có cặp góc trong cùng phía bù nhau).
b) Ta có: F ^ = H ^ 1 ; K ^ = H ^ 2 mµ H ^ 1 = H ^ 2 ( đối đỉnh)
nên F ^ = K ^ . Suy ra EF//IK( vì có cặp góc so le trong bằng nhau).
Ta có : M ^ 1 = P ^ 1 = 75 0 .
Suy ra a//c( vì có cặp góc đồng vị bằng nhau)
Ta có:
b N P ^ kÒ bï víi gãc N 1 , d o ®ã: b N P ^ = 180 0 − 105 0 = 75 0 VËy b N P ^ = P 1 ^ = 70 0
Suy ra b//c (vì có cặp góc đồng vị bằng nhau)
Cho hình vẽ dưới dây, biết rằng A x / / B y , chứng minh rằng B O ⊥ O A
Qua O kẻ d sao cho d / / A x / / B y .
O 1 ^ = 50 ° = y B O ^ ( so le trong); O 2 ^ = O A x ^ = 40 ° ( so le trong)
⇒ O ^ = 40 ° + 50 ° = 90 °
Cho hình vẽ sau. Hãy chứng tỏ AD // CG
Chỉ ra AD // BE và CG // BE để suy ra AD // CG
\(a,\widehat{N_1}++\widehat{N_4}=180^0\left(kề.bù\right)\\ \Rightarrow\widehat{N_1}=180^0-105^0=75^0\\ \Rightarrow\widehat{N_1}=\widehat{M_1}\)
Mà 2 góc này ở vị trí so le trong nên \(a//b\)
\(b,\left\{{}\begin{matrix}a//b\\a\perp c\end{matrix}\right.\Rightarrow b\perp c\)
\(c,\widehat{M_4}+\widehat{M_1}=180^0\left(kề.bù\right)\\ \Rightarrow\widehat{M_4}=180^0-75^0=105^0\\ \widehat{N_3}+\widehat{N_4}=180^0\left(kề.bù\right)\\ \Rightarrow\widehat{N_3}=180^0-105^0=75^0\)
a) Ta có: \(\widehat{N_1}+\widehat{N_4}=180^0\)(kề bù)
\(\Rightarrow\widehat{N_1}=180^0-\widehat{N_4}=180^0-105^0=75^0\)
\(\Rightarrow\widehat{N_1}=\widehat{M_1}=75^0\)
Mà 2 góc này là 2 góc đồng vị
=> a//b
b) Ta có:
a//b(cmt)
a⊥c(gt)
=> b⊥c(từ vuông góc đến song song)
c) Ta có: \(\widehat{N_3}=\widehat{N_1}=75^0\)(đối đỉnh)
Ta có: \(\widehat{M_4}+\widehat{M_1}=180^0\)(kề bù)
\(\Rightarrow\widehat{M_4}=180^0-\widehat{M_1}=180^0-75^0=105^0\)
Gọi I là trung điểm của dây cung AB không đi qua tâm của (O; R) . Qua I vẽ dây CD
a) chứng tỏ CD>=AB. Tìm độ dài nhỏ nhất , lớn nhất của các dây quay quanh I
b) cho R=5cm; OI=4cm. Tính độ dài dây cung ngắn nhất qua I
c) chứng tỏ: góc OAI > góc ODI