Phương trình bậc hai (ẩn x): x 2 -3mx + 4 = 0 có nghiệm kép khi m bằng:
A. m = 2 3
B. m = - 2 3
C. m = ± 4 3
D. m = 16 9
cho phương trình bậc hai: x2 + 6x + m - 2 = 0 (ẩn x, tham số m). Tìm m để phương trình có nghiệm kép, tính nghiệm kép đó
Để phương trình có nghiệm kép thì 6^2-4(m-2)=0
=>4(m-2)=36
=>m-2=9
=>m=11
=>x^2+6x+9=0
=>x=-3
cho phương trình bậc hai ( ẩn x,m tham số) :x^2 -m.x+m-1=0 (1)
a) giải phương trình (1) với m=0
b) tìm m để phương trình (1) có nghiệm kép
a: Khi m=0 thì (1) sẽ là x2-1=0
=>x=1 hoặc x=-1
b: Để phương trình có nghiệm kép thì Δ=0
\(\Leftrightarrow\left(-m\right)^2-4\left(m-1\right)=0\)
\(\Leftrightarrow m^2-4m+4=0\)
=>m-2=0
hay m=2
Cho phương trình bậc hai x 2 – 2(m + 1) x + 4m = 0. Phương trình có nghiệm kép khi m bằng:
A. 1
B. –1
C. Với mọi m
D. Một kết quả khác
Phương trình bậc hai x 2 - 2(m + 1)x + 4m = 0 có nghiệm kép khi m bằng:
A. -1
B. 1
C. Với mọi m
D. Một kết quả khác
Chọn đáp án B
x 2 - 2(m + 1)x + 4m = 0
Δ' = m + 1 2 - 4m = m 2 - 2m + 1 = m - 1 2
Phương trình có nghiệm kép khi Δ'= 0 ⇔ m - 1 2 = 0 ⇔ m = 1
Cho phương trình bậc hai (ẩn x): x 2 - 2mx + 2m – 1 = 0
b) Xác định m để phương trình có nghiệm kép và tính nghiệm đó.
b)
Phương trình có nghiệm kép khi và chỉ khi
Δ = 0 ⇔ 4 m - 1 2 = 0 ⇔ m = 1
Khi đó nghiệm kép của phương trình là:
x = (-b)/2a = 2m/2 = m = 1
Bài 1 : tìm các giá trị của m để phương trình có nghiệm kép : A. 3x² - 2mx + 1 = 0 B. 4mx² - 6x - m-3 = 0 C. (m+2) x² - 2 (m-1) x + 4 = 0 D. (m-6) x² + 3mx - 2 = 0
a: Δ=(-2m)^2-4*3*1=4m^2-12
Để phương trình có nghiệm kép thì 4m^2-12=0
=>m^2=3
=>\(m=\pm\sqrt{3}\)
b:
TH1: m=0
=>-6x-3=0
=>x=-1/2(nhận)
TH2: m<>0
Δ=(-6)^2-4*4m*(-m-3)
=36-16m(-m-3)
=36+16m^2+48m
=16m^2+48m+36
Để phương trình có nghiệm kép thì 16m^2+48m+36=0
=>m=-3/2
c: TH1: m=-2
=>-2(-2-1)x+4=0
=>6x+4=0
=>x=-2/3(nhận)
TH2: m<>-2
Δ=(2m-2)^2-4(m+2)*4
=4m^2-16m+4-16m-32
=4m^2-32m-28
Để pt có nghiệm kép thì 4m^2-32m-28=0
=>\(m=\dfrac{16\pm6\sqrt{11}}{5}\)
d: TH1: m=6
=>18x-2=0
=>x=1/9(nhận)
TH2: m<>6
Δ=(3m)^2-4*(-2)(m-6)
=9m^2+8m-48
Để pt có nghiệm kép thì 9m^2+8m-48=0
=>\(m=\dfrac{-4\pm8\sqrt{7}}{9}\)
Cho phương trình bậc hai ( ẩn x) : x² + 4x + m +1= 0 (*) (m là tham số)
a) Giải phương trình khi m = -1
b) Tìm m để phương trình có một nghiệm bằng 2.Tìm nghiệm còn lại.
c) Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn x12 + x12 =10.
a)thay m=1 vào pt ta có
\(x^2+4x=0\)
<=> \(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b) thay x=2 vào pt ta có: 13+m=0
<=>m=-13
thay m=-13 vào pt ta có
\(x^2+4x-12=0\)
<=>(x-2)(x+6)=0
<=>\(\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)\(\)
vậy với m=-13 thì nghiệm còn lại là x=-6
c) để pt có 2 nghiệm pb thì \(\Delta>0\)
<=>16-4m-4>0
<=>3-m>0
<=>m<3
áp dụng định lí Vi-ét ta có\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+1\end{matrix}\right.\)
theo đề bài ta có \(x_1^2+x_2^2=10\)
<=>\(\left(x_1+x_2\right)^2-2x_1x_2=10\)
<=>16-2m-2=10
<=>2-m=0
<=>m=2(nhận)
vậy với m=2 thì pt có 2 nghiệm pb thỏa yêu cầu đề bài.
Biết phương trình bậc hai (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 (x là ẩn số) có nghiệm kép . Tìm nghiệm kép đó
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1