b)
Phương trình có nghiệm kép khi và chỉ khi
Δ = 0 ⇔ 4 m - 1 2 = 0 ⇔ m = 1
Khi đó nghiệm kép của phương trình là:
x = (-b)/2a = 2m/2 = m = 1
b)
Phương trình có nghiệm kép khi và chỉ khi
Δ = 0 ⇔ 4 m - 1 2 = 0 ⇔ m = 1
Khi đó nghiệm kép của phương trình là:
x = (-b)/2a = 2m/2 = m = 1
cho phương trình bậc hai ( ẩn x,m tham số) :x^2 -m.x+m-1=0 (1)
a) giải phương trình (1) với m=0
b) tìm m để phương trình (1) có nghiệm kép
cho phương trình bậc hai: x2 + 6x + m - 2 = 0 (ẩn x, tham số m). Tìm m để phương trình có nghiệm kép, tính nghiệm kép đó
Cho phương trình bậc 2:(m-1)x2-2mx+m+1=0 )m\(\ne\)1) (x là ẩn)
a) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt
b) Không phải phương trình, xác định giá trị của m để tích 2 nghiệm =3 từ đó tính tổng 2 nghiệm ấy
cho phương trình x2+ 2mx -2m-6=0 (1), (với ẩn x, tham số m ). xác định giá trị của m để phương trình (1) có hai nghiệm x1,x2 sao cho x12 +x22 nhỏ nhất.
Cho phương trình bậc hai (ẩn x): x 2 - 2mx + 2m – 1 = 0
a) Với giá trị nào của m thì phương trình có nghiệm.
1)Xác định m và n để các phương trình sau đây là phương trình bậc hai
a) (m-2).x^3+3.(n^2-4n+m).x^2-4x+7=0
b) (m^2-1).x^3-(m^2-4m+3).x^2-3x+2=0
2) Cho các phương trình sau. Gọi x1 là nghiệm cho trước hãy định m để phương trình có nghiệm x1 và tính nghiệm còn lại
a) x^2-2mx+m^2-m-1 =0 (x1=1)
b) (m-1)x^2+(2m-2).x+m+3 =0 (x1=0)
c) (m^2-1).x^2+ (1-2m).x+2m-3 = 0 (x1=-1)
cho phường trình x2 + (2m + 1)x + m(m - 1)=0 (ẩn x, tham số m)
a/ tìm m để phương trình có nghiệm kép. tính nghiệm kép đó
b/ giải phương trình với m=1
tìm m để phương trình có nghiệm kép , tìm nghiệm kép đó (nếu có)
a, x mũ 2 + 2(m-3)x + m-3=0
b, (2m-7)x bình +2(2m+5)x - 14m+1=0
c, x bình - 2(m-4)x + m bình =0
Cho phương trình bậc hai x 2 + 4x + m = 0 (1)
b) Xác định m để phương trình (1) có nghiệm kép.