Cho phương trình 2 x 2 - x - 7 = 0, không giải phương trình
b) Tính x 1 2 + x 2 2
. Cho phương trình: x 2 + 5x − 7 = 0 có hai nghiệm x1, x2 . Không giải phương trình, hãy tính: M = x 2 1 + x 2 2 − 2x1x2.
a) Cho phương trình $x^{2}-m x-10 m+2=0$ có một nghiệm $x_{1}=-4$. Tìm $m$ và nghiệm còn lại.
b) Cho phương trình $x^{2}-6 x+7=0 .$ Không giải phương trình, hãy tính tổng và tích của hai nghiệm của phương trình đó.
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
Vậy m=3, và ngiệm còn lại x2=7
a)
m = 3
x2=7
Bài 1. Giải phương trình
b) (x - 3)(x - 5) = x ^ 2 - 1
c) x ^ 3 + x ^ 3 - x ^ 2 - 1 = 0
Bài `1:`
`b)`
`(x-3).(x-5)=x^{2}-1`
`<=>x^{2}-5x-3x+15=x^{2}-1`
`<=>x^{2}-8x+15-x^{2}+1=0`
`<=>-8x+16=0`
`<=>-8x=-16`
`<=>x=2`
Vậy `S={2}`
`c)`
`x^{3}+x^{3}-x^{2}-1=0`
`<=>2x^{3}-x^{2}-1=0`
`<=>2x^{3}-2x^{2}+x^{2}-1=0`
`<=>2x^{2}.(x-1)+(x-1).(x+1)=0`
`<=>(x-1).(2x^{2}+x+1)=0`
Ta có:
`2x^{2}+x+1`
`=2.(x^{2}+1/2x+ 1/2)`
`=2.[x^{2}+2.x. 1/4+(1/4)^{2}+7/16]`
`=2.[(x+1/4)^{2}+7/16]`
`=2.(x+1/4)^{2}+7/8`
Ta có:
`(x+1/4)^{2}\ge0AAx`
`=>2.(x+1/4)^{2}\ge0AAx`
`=>2(x+1/4)^{2}+7/8>0AAx`
`=>x-1=0`
`<=>x=1`
Vậy `S={1}`
`@Nae`
Bài 5. Không giải phương trình, cho biết dấu các nghiệm
a) x x 2 13 40 0 . b) 5 7 1 0 x x 2 .
c) 3 5 1 0 x x 2
cho x^2+4x-1=0 không giải phương trình. Hãy tính giá trị biểu thức A=x^1/x^2 + x^2/x^1 + 5/2
\(\Delta=4^2-4.1.(-1)=20>0\)
Theo Viét
\(\begin{cases}x_1+x_2=-4\\x_1x_2=1\end{cases}\)
\(A=\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}\)
\(=\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}\)
\(=\dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}+\dfrac{5}{2}\)
\(=\dfrac{(-4)^2-2.1}{1}+\dfrac{5}{2}\)
\(=14+2,5=16,5\)
Vậy \(A=16,5\)
cho phương trình : x2 - 2x - 15 = 0
không giải phương trình hãy tính x1 - x2
Theo hệ thức vi ét x1+x2=2; x1x2=-15
x1-x2= căn (x1-x2)2= căn [(x1+x2)2-4x1x2]
bạn thay vào rồi tính nốt nha
Cho pt X^2+3X-7=0(1) Gọi X1;X2 là 2 nghiệm phân biệt của Phương trình (1) không giải phương trình hãy tính giá trị của biểu thức F=X1^2-3X2 -2013
\(F=x_1^2-3x_2-2013\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-7\end{matrix}\right.\)
Vì \(x_1\) là nghiệm của PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)
\(\Leftrightarrow F=7-3x_1-3x_2-2013\\ F=-2006-3\left(x_1+x_2\right)=-2006-3\left(-3\right)=-1997\)
Cho 2 phương trình x^2 + 2015x - 2016 = 0 và y^2 + 2015y - 2016 = 0.
Không giải phương trình có cách nào tính được x - y, x + y hay không? Biết rằng x > y.
Nhìn là biết đáp án x-y=0 và x+y=2 mà bạn. Do x=1, y=1
1.Giải các phương trình sau:
a) 2x2 +16 -6 = 4\(\sqrt{x\left(x+8\right)}\)
b) x4 -8x2 + x-2\(\sqrt{x-1}\) + 16=0
2. Gọi x1;x2 là nghiệm phương trình x2 -3x -7 =0. Không giải phương trình tính các giá trị của biểu thức sau:
A = \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}\)
B= \(x^2_1+x_2^2\)
C= |x1 - x2|
D= \(x_1^4+x_2^4\)
E= (3x1 + x2) (3x2 + x1)
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1