Từ các mệnh đề:
P: “Gió mùa Đông Bắc về”
Q: “Trời trở lạnh”
Hãy phát biểu mệnh đề P ⇒ Q
Cho tam giác ABC. Từ các mệnh đề:
P: “Tam giác ABC đều”
Q: “Tam giác ABC cân và có một góc bằng \({60^o}\)”,
Hãy phát biểu hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\) và xác định tính đúng sai của mệnh đề đó.
Nếu cả hai mệnh đề trên đều đúng, hãy phát biểu mệnh đề tương đương.
+) Mệnh đề \(P \Rightarrow Q\) là: “Vì tam giác ABC đều nên tam giác ABC cân và có một góc bằng \({60^o}\)”.
+) Mệnh đề \(Q \Rightarrow P\) là: “Tam giác ABC cân và có một góc bằng \({60^o}\) suy ra tam giác ABC đều”.
Dễ thấy cả hai mệnh đề trên đều đúng.
+) Mệnh đề tương đương: (dùng một trong các cách sau:)
“Tam giác ABC đều tương đương tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều là điều kiện cần và đủ để có tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều khi và chỉ khi tam giác ABC cân và có một góc bằng \({60^o}\)”
“Tam giác ABC đều nếu và chỉ nếu tam giác ABC cân và có một góc bằng \({60^o}\)”
Với hai số thực a và b, xét mệnh đề P: “\({a^2} < {b^2}\)” và Q: “\(0 < a < b\)”
a) Hãy phát biểu mệnh đề \(P \Rightarrow Q\);
b) Hãy phát biểu mệnh đề đảo của mệnh đề ở câu a.
c) Xác định tính đúng sai của mỗi mệnh đề ở câu a và câu b.
a) Mệnh đề \(P \Rightarrow Q\) là: “Nếu \({a^2} < {b^2}\) thì \(0 < a < b\)”
b) Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(0 < a < b\) thì \({a^2} < {b^2}\)”
c) Mệnh đề \(P \Rightarrow Q\) là: “Nếu \({a^2} < {b^2}\) thì \(0 < a < b\)” sai,
Chẳng hạn \(a = 2;\;b = -3\) ta có: \({2^2} < {( - 3)^2}\) nhưng không suy ra \(0<2<-3\).
Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(0 < a < b\) thì \({a^2} < {b^2}\)” đúng.
Phát biểu mệnh đề P => Q và phát biểu mệnh đề đảo, xét tính đúng sai của các mệnh đề đó với: P: ″2 > 9″ và Q: ″4 < 3″. Chọn đáp án đúng:
A. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này đúng vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q đúng.
B. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này sai vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q sai.
C. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này sai vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này sai vì mệnh đề Q sai.
D. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này đúng vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q sai.
Cho hai mệnh đề P và Q. phát biểu nào sau đây sai về mệnh đề đúng P ⇔ Q?
A. P khi và chỉ khi Q
B. P tương đương Q
C. P là điều kiện cần để có Q
D. P là điều kiện cần và đủ để có Q
Đáp án C
Mệnh đề đúng P ⇔ Q có thể được phát biểu theo các ngôn ngữ khi và chỉ khi, nếu và chỉ nếu, điều kiện cần và đủ nên đáp án C là sai.
Với mỗi số thực x, xét các mệnh đề P: “ x 2 = 1”, Q: “x = 1” Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó;
(P⇒Q): "Nếu x 2 = 1 thì x = 1". Mệnh đề đảo là: “Nếu x = 1 thì x 2 = 1 thì x =1”.
Cho tam giác ABC. Xét các mệnh đề P: “AB = AC”, Q: “Tam giác ABC cân”. Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó
(P ⇒Q): “Nếu AB = AC thì tam giác ABC cân”.
Mệnh đề đảo (Q ⇒ P): “Nếu tam giác ABC cân thì AB = AC”.
Cho n là số tự nhiên. Xét các mệnh đề:
P: “n là một số tự nhiên chia hết cho 16”.
Q: “n là một số tự nhiên chia hết cho 8”.
a) Với n = 32, phát biểu mệnh đề P ⇒ Q và xét tính đúng sai của mệnh đề đó.
b) Với n = 40, phát biểu mệnh đề đảo của mệnh đề P ⇒ Q và xét tính đúng sai của mệnh đề đó.
a) Với n = 32, ta có các mệnh đề P, Q khi đó là:
P: “Số tự nhiên 32 chia hết cho 16”;
Q: “Số tự nhiên 32 chia hết cho 8”;
Mệnh đề P ⇒ Q: “Nếu số tự nhiên 32 chia hết cho 16 thì số tự nhiên 32 chia hết cho 8”.
Đây là mệnh đề đúng vì 32 chia hết cho 16 và 8.
b) Với n = 40, ta có các mệnh đề P, Q khi đó là:
P: “Số tự nhiên 40 chia hết cho 16”;
Q: “Số tự nhiên 40 chia hết cho 8”;
Mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề Q ⇒ P: “Nếu số tự nhiên 40 chia hết cho 8 thì số tự nhiên 40 chia hết cho 16”.
Mệnh đề đảo này là mệnh đề sai. Vì 40 chia hết cho 8 nhưng 40 không chia hết cho 16.
Cho a là số tự nhiên, xét các mệnh đề P : “a có tận cùng là 0”, Q: “a chia hết cho 5”.
Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó
(P ⇒Q): “Nếu a có tận cùng bằng 0 thì a chia hết cho 5”. Mệnh đề đảo (Q⇒P): “Nếu a chia hết cho 5 thì a có tận cùng bằng 0”.
Với mỗi số thực x, xét các mệnh đề P : "x là một số hữu tỉ"; Q : "\(x^2\) là một số hữu tỉ"
a) Phát biểu mệnh đề \(P\Rightarrow Q\) và xét tính đúng sai của nó ?
b) Phát biểu mệnh đề đảo của mệnh đề trên ?
c) Chỉ ra một giá trị của x mà mệnh đề đảo sai ?
a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x\) là một số hữu tỉ \(x^2\) cũng là một số hữu tỉ". Mệnh đề đúng.
b) Mệnh đề đảo là " Nếu \(x^2\) là một số hữu tỉ thì \(x\) là một số hữu tỉ"
c) Chẳng hạn, với \(x=\sqrt{2}\) mệnh đề này sai