Cho tứ giác ABCD. Nếu A B → = D C → và A C → = B C → thì ABCD là:
A. Hình bình hành
B. Hình vuông
C. Hình chữ nhật
D. Hình thoi
tứ giác ABCD có A=60 B=90 .Tính C;D và góc ngoài tứ giác tại C nếu: a; C-D=20
a) C−D=20o
Mà ta có C+D=360o−(A+B)=360o−(60o+90o)=210o (tổng 4 góc trong một tứ giác bằng 360o)
⇔C−D+C+D=20o+210o
⇔2C=230o
⇒C=115o và D=95o
Góc ngoài của tứ giác tại đỉnh C là 180o−115o=65o
Xét tứ giác ABCD có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)( tổng các góc trong tứ giác)
\(\Rightarrow\widehat{C}+\widehat{D}=360^0-\widehat{A}-\widehat{B}=360^0-60^0-90^0=210^0\)
Ta có: \(\left\{{}\begin{matrix}\widehat{C}+\widehat{D}=210^0\\\widehat{C}-\widehat{D}=20^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{C}=\left(210^0+20^0\right):2=115^0\\\widehat{D}=\left(210^0-20^0\right):2=95^0\end{matrix}\right.\)
Tứ giác ABCD có A=60;B=90.Tính góc C,D và góc ngoài của tứ giác tại đỉnh C nếu :
a)C-D=20
b)C=3/4D
tổng 2 góc d và c là
360-90-60=210 a, nếu c-d=20 thì
C= ( 210+20) : 2= 115o
D= 210-115=95o
b, nếu C= 3/4 D thì
C= 3/4+3 ( C+D)
C= 3/7 210=90o
D= 90: 3/4=120o
Cho tứ giác ABCD có góc A = 60°, góc B=90°.
Tính góc C và góc D và góc ngoài của tứ giác đỉnh C nếu :
a) góc C - góc D = 90°
b) góc C = 3/4 góc D
lm hộ mk đi please ;(
1. Cho tứ giác ABCD có góc C - góc D = 10o. Các tia phân giác góc A và B cắt nhau tại I. Biết góc AIB = 65o. Tính góc C và D.
2. Cho tứ giác ABCD. Các tia phân giác góc A,B,C,D cắt nhau thành 1 tứ giác. Chứng minh tứ giác đó có tổng 2 góc đối = 180o.
3. Tứ giác ABCD có góc A = góc C = 90o. Chứng minh phân giác góc B và D // với nhau hoặc trùng nhau.
Cho tứ giác ABCD có góc A = góc B và góc C = góc D. Chứng minh rằng ABCD là hình thang cân Vẽ hình luôn nếu có thể..
góc A=góc B
góc C=góc D
Do đó: góc A+góc D=góc B+góc C
mà góc A+góc B+góc C+góc D=360 độ
nên góc A+góc D=góc B+góc C=360/2=180 độ
=>AB//CD
Xét tứ giác ABCD có
AB//CD
góc A=góc B
=>ABCD là hình thang cân
Tính các góc A,B,C của tứ giác ABCD nếu góc A=B=C và góc D= 120 độ
Có \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
\(\Leftrightarrow3\widehat{A}+120^0=360^0\)
\(\Leftrightarrow\widehat{A}=80^0\)
\(\Rightarrow\)\(\widehat{A}=\widehat{B}=\widehat{C}=80^0\)
Vậy...
Cho tứ giác ABCD có AC = BD và AC vuông góc BD. khi đó : A. Tứ giác ABCD là hình vuông B. Tứ giác ABCD là hình bình hành C. Tứ giác ABCD là hình thoi D. ABCD là tứ giác bất kì
Bài 4: Tứ giác ABCD có 𝐴̂ = 600; 𝐵̂=900. Tính góc C, góc D và góc ngoài của tứ giác tại đỉnh C nếu :
a) GÓC C− GÓC D=200 b) C= 3/4 GÓC D
a: Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
\(\Leftrightarrow\widehat{C}+\widehat{D}=210^0\)
mà \(\widehat{C}-\widehat{D}=20^0\)
nên \(2\cdot\widehat{C}=230^0\)
\(\Leftrightarrow\widehat{C}=115^0\)
\(\Leftrightarrow\widehat{D}=95^0\)
Số đo góc ngoài tại đỉnh C là: \(180^0-115^0=65^0\)
b: Ta có: \(\widehat{C}+\widehat{D}=210^0\)
\(\Leftrightarrow\widehat{D}\cdot\dfrac{7}{4}=210^0\)
\(\Leftrightarrow\widehat{D}=120^0\)
\(\Leftrightarrow\widehat{C}=90^0\)
Số đo góc ngoài tại đỉnh C là: \(180^0-90^0=90^0\)
cho tứ giác ABCD có AB=a; BC=b; CD=c; DA=d (a,b,c,d > 0 thỏa \(a^2+b^2+c^2+d^2=\left(a+c\right)\left(b+d\right)\)
a) tứ giác ABCD có gì đặc biệt?
b) nếu cho thêm giả thiết AC*BD=ab+cd khi đó tính các góc của ABCD
a) \(a^2+b^2+c^2+d^2=ab+bc+ac+cd.\)
<=>\(2a^2+2b^2+2c^2+2d^2=2ab+2ac+2bc+2cd\)
<=>\(2a^2+2b^2+2c^2+2d^2-2ab-2bc-2ac-2cd=0\)
<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)+\left(d^2-2cd+c^2\right)\)=0
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(d-c\right)^2=0\)
=>a=b=c=d
=> ABCD là hình thoi
Cho tứ giác abcd .tính các góc của tứ giác biết 4 góc bằng nhau
Cho tứ giác abcd .tính độ lớn từng góc trong tứ giác nếu độ lớn góc A góc B góc C góc D lần lượt tỷ lệ với 1;2;4;5
1. Xét tứ giác ABCD ta có :
^A + ^B + ^C + ^D = 3600 ( định lí )
mà 4 góc đó bằng nhau
=> ^A = ^B = ^C = ^D = 3600/4 = 900
2. Xét tứ giác ABCD ta có :
^A + ^B + ^C + ^D = 3600 ( định lí ) (1)
mà ^A , ^B , ^C , ^D lần lượt tỉ lệ với 1 ; 2 ; 4 ; 5
=> \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)(2)
Từ (1) và (2) => Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^0}{12}=30^0\)
=> ^A = 300
^B = 300.2 = 600
^C = 300.4 = 1200
^D = 300.5 = 1500
Xét tứ giác ABCD có các góc bằng nhau
=> \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\left(dl\right)\)
\(\Leftrightarrow4\widehat{A}=360^o\Leftrightarrow\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\)
Bài 2:
Xét tứ giác ABCD
=> \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Vì các góc tứ giác ABCD lần lượt tỉ lệ với 1:2:4:5
\(\Rightarrow\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}\)VÀ \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{4}=\frac{\widehat{D}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+4+5}=\frac{360^o}{12}=30^o\)
Do đó
\(\frac{\widehat{A}}{1}=30^o\Leftrightarrow\widehat{A}=30^o\)
\(\frac{\widehat{B}}{2}=30^o\Leftrightarrow\widehat{B}=60^o\)
\(\frac{\widehat{C}}{4}=30^o\Leftrightarrow\widehat{C}=120^o\)
\(\frac{\widehat{C}}{5}=30^o\Leftrightarrow\widehat{C}=150^o\)
Vậy.........
a,
1 tứ giác có tổng 4 góc là 360 độ nên 1 góc có :
360 : 4 = 90 độ
b,
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{1+2+4+5}=\frac{360}{12}=30\)
\(\frac{a}{1}=30\Rightarrow a=30\)
\(\frac{b}{2}=30\Rightarrow b=60\)
\(\frac{c}{4}=30\Rightarrow c=120\)
\(\frac{d}{5}=30\Rightarrow d=150\)