Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đặng tấn sang
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 23:17

a: Để phương trình có nghiệm thì (-2)^2-4(m-3)>=0

=>4-4m+12>=0

=>-4m+16>=0

=>-4m>=-16

=>m<=4

b: x1-x2=4

x1+x2=2

=>x1=3; x2=-1

x1*x2=m-3

=>m-3=-3

=>m=0(nhận)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 11 2019 lúc 14:06

Đáp án B

Hoàng Nguyệt
Xem chi tiết
Nguyễn Trần Thành Đạt
13 tháng 3 2021 lúc 13:14

a) Thay m=-2 vào pt:

\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Với m= -2 => S= {-2;0}

b) Để phương trình trên có 1 nghiệm x1=2:

<=> 22 -2.(m+1).2-(m+2)=0

<=> 4-4m -4 -m-2=0

<=> -5m=2

<=>m=-2/5

c) ĐK của m để pt trên có nghiệm kép:

\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)

Vô nghiệm.

Thuần Mỹ
Xem chi tiết
Vô danh
20 tháng 3 2022 lúc 22:01

\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m\left(mx-2\right)=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m^2x-2m=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+1\right)=3+2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=m.\dfrac{3+2m}{m^2+1}-2\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m+2m^2-2m^2-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)

\(x+y=0\\ \Leftrightarrow\dfrac{3m-2}{m^2+1}+\dfrac{3+2m}{m^2+1}=0\\ \Leftrightarrow\dfrac{3m-2+3+2m}{m^2+1}=0\\ \Rightarrow4m+1=0\\ \Leftrightarrow m=-\dfrac{1}{4}\)

 

Hồ Nhật Phi
20 tháng 3 2022 lúc 22:06

x+y=0 \(\Rightarrow\) y=-x.

\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}mx+x=2\\x-mx=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x\left(m+1\right)=2\\x\left(1-m\right)=3\end{matrix}\right.\) \(\Rightarrow\) \(\dfrac{2}{m+1}=\dfrac{3}{1-m}\) \(\Rightarrow\) m=-1/5 (nhận).

nguyễn xuân tùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2021 lúc 22:46

a) Để phương trình có nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-6\right)^2-4\cdot1\cdot\left(m-2\right)\ge0\)

\(\Leftrightarrow-4m+8+36\ge0\)

\(\Leftrightarrow-4m+44\ge0\)

\(\Leftrightarrow-4m\ge-44\)

hay \(m\le11\)

•¢ɦẹρ➻¢ɦẹρ
Xem chi tiết
bepro_vn
2 tháng 9 2021 lúc 21:53

Đặt x^2=t

pt có 4 no pb=>pt2t^2-(m-1)t+m-3=0 có 2 no pb >0

=>\(\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}m^2-2m+1-4m+12>0\\\dfrac{m-3}{2}>0\\m-1>0\end{matrix}\right.\)=>...=>m>3

bepro_vn
2 tháng 9 2021 lúc 21:53

Vậy m>3

Khai Anh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 2 2021 lúc 13:01

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

ngọc hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 10:57

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2

Mai Anh Phạm
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 5 2021 lúc 7:51

\(\Delta'=m^2-\left(m^2-m+2\right)=m-2\)

Pt đã cho có 2 nghiệm khi \(\Delta'\ge0\Leftrightarrow m\ge2\)

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+2\end{matrix}\right.\)

\(A=x_1x_2-2\left(x_1+x_2\right)\)

\(A=m^2-m+2-4m\)

\(A=m^2-5m+2=\left(m-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge-\dfrac{17}{4}\)

\(A_{min}=-\dfrac{17}{4}\) khi \(m=\dfrac{5}{2}\)