Tìm X biết :
X-4 x X-2015<0
M=20154/x^4 -2015^4/x^2y^2+3×2015^3/x^3+3×2015^3/x^2y+2015
Biết 2015/x+3=2015/y
tìm M
tìm x biết:( x+1) + ( x+ 2) + ( x+3)+ ( x+4)+.....+( x+9)+ ( x+10) = 2015
khoan cach giua 2 so la :2-1=1
co tat ca so so hang hay x la :(10-1):1+1=10
(x+1)+(x+2)+.....................(x+10)=2015
x*10+[(1+10)*10/2]=2015
x*10+55 =2015
x*10 =2015-55
x*10 =1960
x =1960/10
x =196
tìm x biết:( x+1) + ( x+ 2) + ( x+3)+ ( x+4)+.....+( x+9)+ ( x+10) = 2015
Giải:Ta có:\(\left(x+1\right)+\left(x+2\right)+......+\left(x+10\right)=2015\)
\(\Rightarrow x+1+x+2+.....+x+10=2015\)
\(\Rightarrow10x+\left(1+2+......+10\right)=2015\)
\(\Rightarrow10x+55=2015\Rightarrow10x=2015-55\)
\(\Rightarrow10x=1960\Rightarrow x=196\)
Vậy .....................
tìm x thuộc Z biết /x+2015/+/x+2019/=4
/x+2015/+/x+2019/=4
x+2015+x+2019=4
2x+4034=4
2x=-4030
x=-2015
Tìm x, biết: (x+4)/2012+(x+3)/2013=(x+2)/2014+(x+1)/2015
\(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}\)
=> \(\frac{x+4}{2012}+1+\frac{x+3}{2013}+1=\frac{x+2}{2014}+1+\frac{x+1}{2015}+1\)
=> \(\frac{x+2016}{2012}+\frac{x+2016}{2013}=\frac{x+2016}{2014}+\frac{x+2016}{2015}\)
=> \(\frac{x+2016}{2012}+\frac{x+2016}{2013}-\frac{x+2016}{2014}-\frac{x+2016}{2015}=0\)
=> \(\left(x+2016\right).\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)=0\)
Vì \(\frac{1}{2012}>\frac{1}{2014};\frac{1}{2013}>\frac{1}{2015}\)
=> \(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\ne0\)
=> \(x+2016=0\)
=> \(x=-2016\)
Tìm x biết: x+1/2015+x+2/2014=x+3/2013+x+4/2012
Câu 7 (1,25đ). a/ Tìm x, biết:
(-12) . x - 4 = 52 . (-4)
b/ Tính hợp lí:
(-2015 + 184) - (84 - 2015) + (-200)
a.
\(\left(-12\right).x-4=5^2.\left(-4\right)\)
\(\Leftrightarrow\left(-12\right).x-4=25.\left(-4\right)\)
\(\Leftrightarrow\left(-12\right).x-4=-100\)
\(\Leftrightarrow\left(-12\right).x=4-100\)
\(\Leftrightarrow\left(-12\right).x=-96\)
\(\Leftrightarrow x=\left(-96\right):\left(-12\right)\)
\(\Leftrightarrow x=8\)
b.
\(\left(-2015+184\right)-\left(84-2015\right)+\left(-200\right)\)
\(=\left(-2015+2015\right)+\left(184-84\right)+\left(-200\right)\)
\(=0+100+\left(-200\right)\)
\(=-100\)
a) (-12).x - 4 = 5².(-4)
-12x - 4 = 25.(-4)
-12x - 4 = -100
-12x = -100 + 4
-12x = -96
x = -96 : (-12)
x = 8
Tìm x biết:
\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}-\dfrac{x-3}{2014}=\dfrac{x-4}{2013}\)
\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}-\dfrac{x-3}{2014}=\dfrac{x-4}{2013}\)
\(\Leftrightarrow\dfrac{x-1}{2016}+\dfrac{x-2}{2015}=\dfrac{x-4}{2013}+\dfrac{x-3}{2014}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)=\left(\dfrac{x-4}{2013}-1\right)+\left(\dfrac{x-3}{2014}-1\right)\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}=\dfrac{x-2017}{2013}+\dfrac{x-2017}{2014}\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}-\dfrac{x-2017}{2013}-\dfrac{x-2017}{2014}=0\)
\(\Leftrightarrow x-2017.\left(\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2013}\right)=0\)
\(\text{Mà }\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}-\dfrac{1}{2103}\ne0\Rightarrow x-2017=0\)
\(\Leftrightarrow x=2017\) \(\text{Vậy }x=2017\)
Tìm x biết : \(\dfrac{x+4}{2014}\)+\(\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}+1=\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}+1\)
\(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
\(\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\\ x+2018=0\\ x=-2018\)
tìm x biết
a, (1/1x2+1/2x3+1/5x4+...+1/99x100) X=1/1x2+2x3+3x4+...+98x99
b, X/1x3+X/3x5+X/5x7+...+X/2013x2015=4/2015
c, X+1/2015+X+2/2016=X+3/2017+X+4/2018
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)