Tìm x ∈ Z, biết:
b) x + 2 = -9 - 11
Bài toán 1 Tính tỉ số biết:
Bài toán 2. Cho x, y, z,
Chứng minh rằng: có giá tri không phải là số tư nhiên.
Bài toán 3. Tìm x ; biết:
b.
c. x+y+9=xy-7
Bài 2:
Với x,y,z,t là số tự nhiên khác 0
Có \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)
\(\dfrac{y}{x+y+z+t}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)
\(\dfrac{z}{x+y+z+t}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)
\(\dfrac{t}{x+y+z+t}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)
Cộng vế với vế \(\Rightarrow1< M< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}=2\)
=> M không là số tự nhiên.
Bài 1:
Ta có:
\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)
\(B=\left(1+\dfrac{2007}{2}\right)+\left(1+\dfrac{2006}{3}\right)+...+\left(1+\dfrac{2}{2007}\right)+\left(1+\dfrac{1}{2008}\right)+1\)
\(B=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)
\(B=2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}=2009\)
sai rồi kìa \(\frac{A}{B}\)chớ không phải \(\frac{B}{A}\)
bằng \(\frac{1}{2009}\)mới dúng
Tìm x,y,z biết:a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{10}\)và y-x=6
Tìm x,y,z biết:b) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{7}\)và x-2y+z=18
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
⇒\(\dfrac{y-x}{5-2}=\dfrac{6}{3}=2\)
\(\dfrac{x}{2}=2\Rightarrow x=4\)
\(\dfrac{y}{5}=2\Rightarrow y=10\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
b) Ta có: \(\dfrac{x}{8}=\dfrac{2y}{6}=\dfrac{z}{7}\)
\(\dfrac{x-2y+z}{8-6+7}=\dfrac{18}{9}=2\)
\(\dfrac{x}{8}=2\Rightarrow x=16\)
\(\dfrac{y}{3}=2\Rightarrow y=6\)
\(\dfrac{z}{7}=2\Rightarrow z=14\)
Tìm x,y biết:
B= 2x10y9 chia hết cho 9
Tìm x,y biết:
B= 2x10y9 chia hết cho 9
\(B=\overline{2x10y9}⋮9\left(0\le x,y\le9\right)\)
\(\Rightarrow\left(2+x+1+0+y+9\right)⋮9\)
\(\Rightarrow\left(12+x+y\right)⋮9\)
Do \(0\le x,y\le9\)
\(\Rightarrow\left[{}\begin{matrix}x+y=6\\x+y=15\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;5\right),\left(5;1\right),\left(2;4\right),\left(4;2\right),\left(3;3\right),\left(6;9\right),\left(9;6\right),\left(8;7\right),\left(7;8\right)\right\}\)
Bài 2: (2 điểm) Tìm x, biết:
b, \(0,5x+\dfrac{2}{3}x-x=-4\)
\(\Leftrightarrow\dfrac{1}{2}x+\dfrac{2}{3}x-x=-4\Leftrightarrow\dfrac{3x+4x-6x}{6}=-\dfrac{24}{6}\)
\(\Rightarrow x=-24\)
b) \(x.\left(\dfrac{1}{2}+\dfrac{2}{3}-1\right)=-4\)
\(x.\dfrac{-1}{6}=-4\)
\(x=-4:\dfrac{-1}{6}\)
\(x=-24\)
Ta có: \(0.5x+\dfrac{2}{3}x-x=-4\)
\(\Leftrightarrow x\cdot\dfrac{1}{6}=-4\)
hay x=-24
Tìm x biết:
b) 2x(x+3)-3(x^2+1)=x+1-x(x-2)
Giúp mình với ạ
\(2x\left(x+3\right)-3\left(x^2+1\right)=x+1-x\left(x-2\right)\)
\(\Leftrightarrow2x^2+6x-3x^2-3=x+1-x^2+2x\)
\(\Leftrightarrow-x^2+6x-3=-x^2+3x+1\)
\(\Leftrightarrow3x=4\)
hay \(x=\dfrac{4}{3}\)
\(2x\left(x+3\right)-3\left(x^2+1\right)=x+1-x\left(x-2\right)\)
\(\Leftrightarrow2x^2+6x-3x^2-3=x+1-x^2+2x\)
\(\Leftrightarrow3x=4\Leftrightarrow x=\dfrac{4}{3}\)
B=2x^2+6x-3x^2-3=x+1-x(x-2)=0
=-x^2+6x-3=x+1-x^2+x=0
=4x-3=0
x=3/4
Nâng cao:
Tìm x ; biết:
b.
c. x + y + 9 = xy - 7
a)Ta có :
25-\(y^2\)=8(8-2009)
⇔ 0 ≤ \(y^2\)≤ 25
⇒y∈{1;2;3;4;5}
Mà 25-\(y^2\)⋮8(Vì x ∈ Z)
⇒y∈{1;3;5}(t/mãn y ∈ Z)
TH1:Với y =1 ,ta có:
25-\(y^2\)=\(8\left(x-2009\right)^2\)
⇔25-\(1^2\)=\(8\left(x-2009\right)^2\)
⇔\(8\left(x-2009\right)^2\) =24
⇔\(\left(x-2009\right)^2\)= 3(vô lí)
⇒TH1 loại
TH2Với y =3,ta có:
25-\(y^2\) =8(x-2009)
⇔25-\(3^2\)=\(8\left(x-2009\right)^2\)
⇔\(8\left(x-2009\right)^2\)=16
⇔\(\left(x-2009\right)^2\)=2(vô lí)
⇒TH2 loại
TH3Với y=5,ta có:
25-\(y^2\) =\(8\left(x-2009\right)^2\)
⇔25-\(5^2\)=\(8\left(x-2009\right)^2\)
⇔\(8\left(x-2009\right)^2\)=0
⇒x-2009=0
⇒x=2009(t/mãn x∈Z)
Vậy y=5 x=2009
b)\(x^3y\) =\(xy^3\)+1997
⇔\(x^3y\)-\(xy^3\)=1997
⇔xy(\(x^2\)-\(y^2\))=1997
⇔xy(x+y)(x-y)=1997
Ta có{1997 là số nguyên tố
{xy(x+y)(x-y)=1997 là hợp số
Vậy không tìm được x,y t/mãn đề bài
Bài 1:Tìm x,y,z biết:
b) \(\dfrac{x}{1,1}\)=\(\dfrac{y}{1,3}\)=\(\dfrac{z}{1,4}\)và 2x-y=5,5
Dạng 2:Một số bài toán về đại lượng tỉ lệ thuận-nghịch:
Bài 1: Biết rằng 21 lít dầu hỏa nặng 16,8kg.Hỏi 19kg dầu hỏa có chứa được vào chiếc can 23 lít không?
Bài 2:Ba đơn vị kinh doanh góp vốn theo tỉ lệ 3:4:6.Hỏi mỗi đơn vị được chia bao nhiêu tiền nếu tổng số tiền lãi là 650 triệu đồng và tiền lãi được chia tỉ lệ thuận với số tiền được đóng góp?
Giúp e với ạ..
1:
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}=\dfrac{2x-y}{2\cdot1,1-1,3}=\dfrac{5.5}{0.9}=\dfrac{55}{9}\)
=>x=121/18; y=143/18; z=77/9
x+16/9=y-25/16=z+9/25 và 9-x/7+11-x/9=2.tìm x+y+z
tìm x thuộc z biết : x:(9/1/2-3/2)=0.4+2/9-2/11/1.6+8/9-8/11
TA CÓ :abcdefg+hjklzxcv=vbnm