tìm GTLN của biểu thức A=\(\frac{x^2}{x^4+1}\)với x là số thực
Cho x là một số thực. Tìm GTLN và GTNN của biểu thức: Q=\(\frac{10x^2+8x+4}{x^2+1}\)
\(\Leftrightarrow Qx^2+Q=10x^2+8x+4\)
\(\Leftrightarrow x^2\left(Q-10\right)-8x+Q-4=0\)(1)
*Neu Q = 10 thi x = ... (ban tu tinh nha)
*Neu Q # 10 thi pt (1) co nghiem khi va chi khi Delta' >
Ta co \(\Delta'\ge0\)
\(\Leftrightarrow16-\left(Q-10\right)\left(Q-4\right)\ge0\)
\(\Leftrightarrow16-Q^2+14Q-40\ge0\)
\(\Leftrightarrow-Q^2+14Q-24\ge0\)
\(\Leftrightarrow2\le Q\le12\)
Ban tu tim dau "=" nha
1. Cho x là số thực không nhỏ hơn 2. Tìm GTNN của biểu thức sau:
A= \(\dfrac{2}{-x^2-2x+5}\)
2. Tìm GTLN của biểu thức sau:
B= \(\dfrac{-x^2-x-1}{x^2}\)
Câu 2:
ĐKXĐ: x<>0
\(B=\dfrac{-x^2-x-1}{x^2}\)
\(=-1-\dfrac{1}{x}-\dfrac{1}{x^2}\)
\(=-\left(\dfrac{1}{x^2}+\dfrac{1}{x}+1\right)\)
\(=-\left(\dfrac{1}{x^2}+2\cdot\dfrac{1}{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x< >0\)
Dấu '=' xảy ra khi 1/x+1/2=0
=>1/x=-1/2
=>x=-2
Cho x,y,z là các số thực dương thỏa mãn \(x^4+\left(y^2-1\right)^2+z^4\le3\)
Tìm GTLN của biểu thức \(A=\sqrt{2}y\left(x+z\right)+\frac{1}{x^2+y^2+z^2+1}\)
Theo đề bài ta có:
\(2\left(y^2+1\right)+6\ge\left(x^4+1\right)+\left(y^4+4\right)+\left(z^4+1\right)\ge2x^2+4y^2+2z^2\)
\(\Rightarrow0< x^2+y^2+z^2\le4\)
Đặt: \(t=x^2+y^2+z^2.Đkxđ:0< t\le4\)
Ta có: \(\sqrt{2}\left(x+y\right)y=\sqrt{2x}y+\sqrt{2z}y\le\frac{2x^2+y^2}{2}+\frac{2z^2+y^2}{2}=x^2+y^2+z^2\)
\(P\le x^2+y^2+z^2+\frac{1}{x^2+y^2+z^2+1}=t+\frac{1}{t+1}=f\left(t\right)\)
Xét hàm: \(f\left(t\right)=t+\frac{1}{t+1}\) liên tục trên \(\left(0;4\right)\)
\(f'\left(t\right)=1-\frac{1}{\left(t+1\right)^2}>0\forall t\in\left\{0;4\right\}\)nên:
\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left\{0;4\right\}\)
\(\Rightarrow P\le f\left(t\right)\le f\left(4\right)=\frac{21}{5}\forall t\in\left(0;4\right)\)
\(\Rightarrow P_{Min}=\frac{21}{5}\Leftrightarrow\orbr{\begin{cases}x=z=1\\y=\sqrt{2}\end{cases}}\)
Vậy ....................
ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡
có cách nào không dùng hàm k ???
Hmmm h thì mình chưa ra nhưng bạn muốn theo cách gì để mình tìm?
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTLN của biểu thức
\(P=\sqrt{x-1}+2\sqrt{y-4}+3\sqrt{z-9}\)
Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)
\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm)
Với x là số thực. TÌm GTLN và GTNN của :
\(A=\frac{3x+4}{x^2+1}\)
\(A=\frac{3x+4}{x^2+1}=-\frac{\left(3x-1\right)^2}{x^2+1}+\frac{9}{2}\le\frac{9}{2}\)
\(A=\frac{3x+4}{x^2+1}=\frac{\left(x+3\right)^2}{x^2+1}-\frac{1}{2}\ge\frac{1}{2}\)
Cho x,y là các số thực. Tìm GTLN của biểu thức: \(P=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
https://olm.vn/hoi-dap/detail/221163930084.html
cậu tìm link này nhé . mình đã trả lời câu này cho 1 bạn r .
học giỏi
Câu 1
Tìm GTLN
B=\(\frac{2\sqrt{x}}{x+1}\)
câu 2 Cho biểu thức
Q=\(\frac{x^2+x+1}{x^2+2x+1}\) với x khác -1
với giá trị nào của x thì biểu thức Q đạt GTLN,tìm GTLN của Q
Câu 1:
Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)
Thật vậy,điều cần c/m \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)
Vậy BĐT phụ (Cô si) là đúng.
----------------------------------------------------------
Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)
Do đó:
\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
mk nghĩ cả hai câu sai nhưng xem lại đề giống y chang
1.Tìm GTLN của các biểu thức:
a,A= -x - 4y2 + 6x - 8y + 3
b, B= x4 - 6x3 + 15x2 - 20x - 15
2.Cho các số thực a,b thỏa mãn: 2a2 + \(\dfrac{b^2}{4}\)+\(\dfrac{1}{a^2}\)=4. Tìm GTNN và GTLN của A= ab+2019
giúp mình với ạ, mình cảm ơn
Cho x, y là các số thực không âm. Tìm GTLN của biểu thức:
\(P=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
đặt \(a=x^2,b=y^2\left(a,b\ge0\right)\)thì \(P=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
Zì \(a,b\ge0\)nên
\(\left(a-b\right)\left(1-ab\right)=a-a^2b-b+ab^2\le a+ab^2=a\left(1+b^2\right)\le a\left(1+2b+b^2\right)=a\left(1+b\right)^2\)
Lại có \(\left(1+a\right)^2=\left(1-a\right)^2+4a\ge4a\)
=>\(P\le\frac{a\left(1+b\right)^2}{4a\left(1+b\right)^2}=\frac{1}{4}\)
dấu "=" xảy ra khi zà chỉ khi\(\hept{\begin{cases}a=1\\b=0\end{cases}=>\hept{\begin{cases}x=\pm1\\y=0\end{cases}}}\)
zậy \(maxP=\frac{1}{4}khi\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)