Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen hoang viet
Xem chi tiết
linh angela nguyễn
Xem chi tiết
Đặng Yến Linh
17 tháng 12 2016 lúc 10:02

x = 0

Phạm Nguyễn Tất Đạt
17 tháng 12 2016 lúc 15:13

\(B=\frac{1}{\sqrt{x}+5}\) đạt GTLN thì \(\sqrt{x}+5\) nhỏ nhất

\(\Leftrightarrow\sqrt{x}\) nhỏ nhất

\(\Rightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\)

Hằng Phạm
Xem chi tiết
CoAi ConanAi
30 tháng 12 2015 lúc 16:30

Để biểu thức trên có giá trị lớn nhất thì: \(\frac{1}{\sqrt{x}+5}=1\Rightarrow\sqrt{x}=-4\) ( vô lí ). Vậy \(\sqrt{x}+5\ge5\)

\(\Rightarrow\) Để biểu thức trên có giá trị lớn nhất thì: \(\frac{1}{\sqrt{x}+5}=\frac{1}{5}\Rightarrow\sqrt{x}+5=5\Rightarrow\sqrt{x}=0\Leftrightarrow x=0\)

Tick mik nha

Tutu
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 23:18

a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:

\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)

Vậy: Khi x=4 thì B=3

b) Ta có: P=A-B

\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

Võ Thị Bích Duy
Xem chi tiết
Con Chim 7 Màu
16 tháng 5 2019 lúc 12:37

2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)

Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)

3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)

Dấu '=' xảy ra khi \(x=2011\)

Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)

4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)

Dấu '=' xảy ra khi \(x=\frac{1}{4}\) 

Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)

Võ Thị Bích Duy
16 tháng 5 2019 lúc 13:41

Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?

Con Chim 7 Màu
16 tháng 5 2019 lúc 14:35

BĐT \(\left(x+y\right)^2\ge4xy\)nhe bạn

NGUYỄN THÙY LINH
Xem chi tiết
Đặng Xuân Kiệt
21 tháng 11 2021 lúc 11:38

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

Khách vãng lai đã xóa
Phạm Minh Hải
Xem chi tiết
Lê Thu Trang
13 tháng 4 2019 lúc 9:55

Cám ơn bạn Phạm Minh Hải giúp tôi giải bài toán này

Nguyễn Văn Cùi
Xem chi tiết
Hoàng Trần Đình Tuấn
15 tháng 12 2015 lúc 19:49

để \(B=\frac{1}{\sqrt{x}+5}\) thì \(\sqrt{x}+5\) nhỏ nhất

xét mẫu:\(\sqrt{x}+5\)

ta có:\(\sqrt{x}\ge0\)

nên : \(\sqrt{x}+5\ge5\)

vậy B=\(\frac{1}{\sqrt{x}+5}\) lớn nhất bằng \(\frac{1}{2}=0,2\)

Nguyễn Trung Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 11:33

a: \(P=\dfrac{x+\sqrt{x}+1+11\sqrt{x}-11+34}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{x+12\sqrt{x}+24}{\sqrt{x}+2}\)

b: Thay \(x=3-2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{3-2\sqrt{2}+12\left(\sqrt{2}-1\right)+24}{\sqrt{2}-1+2}\)

\(=\dfrac{27-2\sqrt{2}+12\sqrt{2}-12}{\sqrt{2}+1}=5+5\sqrt{2}\)