1/ Giá trị x thỏa mãn
lx2+lx+1ll=x2
2/ Số cặp x,y thỏa mãn
x(x+y)=-45
y(x+y)=5
1/ Giá trị x thỏa mãn
lx2+lx+1ll=x2
2/ Số cặp x,y thỏa mãn
x(x+y)=-45
y(x+y)=5
3/ Số tự nhiên n nhỏ nhất để 2n-1 chia hết cho 259
1. Số các cặp số nguyên (x,y) thoả mãn x+y+xy=3 là .....
2. Số phần tử của tập hợp các số x thỏa mãn lx-2,5l + l3,5 - xl = 0 là {
3. Số cặp số dương a và b thỏa mãn 1/a - 1/b =1/a-b là
4. cho (x,y) thỏa mãn 2x-3y/x+2y=2/3.Giá trị của tỉ số y/x bằng ...
Giá trị của x thỏa mãn lx2+lx+1ll=x2
giá trị x thỏa mãn
lx2+ lx-1ll=x2
Giá trị thỏa mãn lx2+lx-1ll=x2
vì |x^2+|x-1||>0;x^2>0
=>x^2-|x-1|=x^2
=>|x-1|=0=>x=1
vậy x=1
tick nhé
Có 2 bài :
B1 : Cặp số nguyên dương x;y thỏa mãn |(x^2+3).(y+1)|=16
B2: Số giá trị nguyên của x thỏa mãn: |x2 -5| + |5 - x2| = 40
Cho 2 số thực dương x,y thỏa mãn
x + y = 4xy
CMR : Tập giá trị của P = xy là \(\left[\dfrac{1}{4};\dfrac{1}{3}\right]\)
Lời giải:
Áp dụng BĐT AM-GM:
$(4xy)^2=(x+y)^2\geq 4xy$
$\Rightarrow 4xy\geq 1\Rightarrow xy\geq \frac{1}{4}$
Bây giờ, cho $x=2; y=\frac{2}{7}$ thỏa mãn điều kiện đề. Nhưng $xy=\frac{4}{7}>\frac{1}{3}$ nên tập giá trị $P=xy$ không thể là $[\frac{1}{4}; \frac{1}{3}]$ được.
Có bao nhiêu giá trị nguyên của tham số m để tồn tại cặp số (x;y) thỏa mãn e 2 x + y + 1 - e 3 x + 2 y = x + y + 1 đồng thời thỏa mãn log 2 2 2 x + y - 1 - m + 4 log 2 x + m 2 + 4 = 0 .
A. 3
B. 4
C. 5
D. 6
Đáp án A
Ta có e 2 x + y + 1 - e 3 x + 2 y = x + y + 1 ⇔ e 2 x + y + 1 + 2 x + y + 1 = e 3 x + 2 y + 3 x + 2 y *
Xét f t = e t + t là hàm số đồng biến trên ℝ mà f 2 x + y + 1 = f 3 x + 2 y ⇒ y = 1 - x
Khi đó log 2 2 2 x + y - 1 - m + 4 log 2 x + m 2 + 4 = 0
Phương trình (1) có nghiệm khi và chỉ khi ∆ = m + 4 - 4 m 2 + 4 ≥ 0 ⇔ 0 ≤ m ≤ 8 3 .
Cho x;y là các số nguyên sao cho giá trị tuyệt đối của x + giá trị tuyệt đối cua y = 5.Số cặp số x;y thỏa mãn là bao nhiêu