Cho tam giác ABC vuông tại A. Kẻ phân giác trong AD của B A C ^ (với D ∈ B C ), biết D B = 15 c m , D C = 20 c m . Tính độ dài các đoạn thẳng AB, AC
Cho tam giác ABC. Vẽ phân giác ngoài tại A của tam giác ABC. Từ B kẻ d//AD.
a) C/m: d cắt AC tại E.
b) C/m: góc ABE = góc AEB.
c) Từ B kẻ b vuông góc với AD, từ A kẻ a//b. C/m: b vuông góc với d và a là pg góc BAC.
a: d//AD
AD cắt AC tại A
Do đó: d cắt AC tại E
b: Gọi Ax là tia đối của tia AB
=>góc xAC là góc ngoài tại đỉnh A của ΔABC
=>AD là phân giác của góc xAC
AD//BE
=>góc xAD=góc ABE và góc DAE=góc AEB
mà góc xAD=góc DAE
nên góc ABE=góc AEB
c: b vuông góc AD
d//AD
Do đó: b vuông góc d
Cho tam giác ABC vuông tại B, đường phân giác AD (D thuộc BC). Kẻ BO vuông góc với AD (O thuộc AD), BO cắt AC tại E. Chứng minh rằng: a, Tam giác ABO= tam giác AEO b,Tam giác BAE là tam giác cân c, AD là đường trung trực của BE d, Kẻ BK vuông góc với AC (K thuộc AC). Gọi M là giao điểm của BK và AD. Chứng minh rằng ME song song với BC
giúp mik nha ! ~ akari ~
tks mấy bạn nhìu !
a) Xét ΔABO vuông tại O và ΔAEO vuông tại O có
AO chung
\(\widehat{BAO}=\widehat{EAO}\)(AO là tia phân giác của \(\widehat{BAE}\))
Do đó: ΔABO=ΔAEO(cạnh góc vuông-góc nhọn kề)
b) Ta có: ΔABO=ΔAEO(cmt)
nên AB=AE(Hai cạnh tương ứng)
Xét ΔABE có AB=AE(cmt)
nên ΔABE cân tại A(Định nghĩa tam giác cân)
c) Xét ΔABD và ΔAED có
AB=AE(cmt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: DB=DE(Hai cạnh tương ứng)
Ta có: AB=AE(cmt)
nên A nằm trên đường trung trực của BE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DB=DE(cmt)
nên D nằm trên đường trung trực của BE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AD là đường trung trực của BE(Đpcm)
Cho tam giác ABC vuông tại A kẻ phân giác B là tia phân giác của AC . Kẻ E vuông góc với D a) sợ sánh DC với AD Thank nha
Đề bài thiếu, lỗi diễn đạt lủng củng quá. Bạn xem lại đề!
Cho tam giác ABC vuông tại A, kẻ phân giác AD của góc BAC (D thuộc BC)
Cho tam giác ABC vuông tại A, kẻ phân giác AD của góc BAC (D thuộc BC). Hạ DE vuông góc với AB (E thuộc AB), DG vuông góc với AC (G thuộc AC). So sánh GC và GD
Cho tam giác ABC vuông tại A; AB=6cm; AC=8cm. BM là đường phân giác của góc B. Kẻ MK vuông góc với BC tại K
a, Tính BC
b, Chứng minh: AM=KM
c, Kẻ AD vuông góc với BC tại D. Chứng minh: AK là phân giác của góc DAC
d, Chứng minh: AB+AC < BC+AD
Cho tam giác ABC vuông tại A. Kẻ AD là phân giác góc ABC ( I thuộc AC). Kẻ ID vuông góc với BC tại D < tia DI cắt tia BA tại E . CMR: a) AB = BD b) Tam giác BEC cân c) AD //EC
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a, Chứng minh: AD = HD
b, So sánh độ dài cạnh AD và DC
c, Chứng minh tam giác KBC là tam giác cân
B18
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
Bài :Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. a. Chứng minh: AD = HD b. So sánh độ dài cạnh AD và DC c. Chứng minh tam giác KBC là tam giác cân.
Cho tam giác ABC vuông góc tại a kẻ phân giác BD của góc B D thuộc ac Kẻ AH vuông góc với BC H thuộc BC ah cắt BC tại E
A) chứng minh tam giác BHA bằng tam giác BHE
b)CM:ED VUÔNG GÓC BC
C)AD<DC
a) Sửa đề: Trên HC lấy E sao cho HE=HB và c/m ΔBHA=ΔEHA
Xét ΔBHA vuông tại H và ΔEHA vuông tại H có
AH chung
BH=EH(gt)
Do đó: ΔBHA=ΔEHA(hai cạnh góc vuông)
a) Sửa đề: Trên HC lấy E sao cho HE=HB
tam giác BHA=tam giác EHA(c.g.c)
tam giác BDA=tam giác BDE(ch-gn)
suy ra góc A=góc E=90 độ và AD=ED
suy ra DE vuông góc với BC
Áp dung định lí pitago vào tam giác DEC có góc E=90 độ
DC^2=DE^2+CE^2
suy ra DC > DE
mà DE = DA
suy ra DC>DA
toán lớp 7 b1 cho tam giác ABC có AB=AC từ B kẻ BX vuông AB , từ C kẻ CY vuông AC chúng cắt nhau tại D . CMR a) tam giác ABD = tam giác ACD b) AD là tia phân giác phân của góc A c) AD vuông AC
a) Để chứng minh tam giác ABD = tam giác ACD, ta cần chứng minh hai tam giác có cạnh và góc bằng nhau. - Biết AB = AC (đề bài). - Ta có DB là đường cao của tam giác ABD và DC là đường cao của tam giác ACD. Theo định nghĩa, đường cao của tam giác là đoạn thẳng kẻ từ các góc vuông góc dưới đến đáy tương ứng. - Vì AB = AC và BD ⊥ AB, CD ⊥ AC nên ta có DB = DC (hai đường cao cùng thuộc tam giác cân). => Tam giác ABD = tam giác ACD (theo nguyên lý tỷ lệ cận). b) Để chứng minh AD là tia phân giác của góc A, ta cần chứng minh rằng góc BAD = góc CAD. - Ta đã chứng minh được tam giác ABD = tam giác ACD (bài a). - Vì hai tam giác cân bằng nhau nên góc BAD = góc CAD (theo tính chất của tam giác cân). => AD là tia phân giác của góc A. c) Để chứng minh AD ⊥ AC, ta cần chứng minh góc ADB + góc ADC = 90°. - Ta đã chứng minh được tam giác ABD = tam giác ACD (bài a). - Vì hai tam giác cân bằng nhau nên góc ADB = góc ADC (theo tính chất của tam giác cân). - Góc ADB + góc ADC = 2 * góc ADB (do góc ADB = góc ADC). - Vì tam giác ABD là tam giác vuông nên góc ADB = 90° / 2 = 45°. - Do đó góc ADB + góc ADC = 45° + 45° = 90°. => AD ⊥ AC (theo tính chất của góc vuông). Vì vậy, ta đã chứng minh a), b), c).
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>góc BAD=góc CAD
=>AD là phân giác của góc BAC