Cho m > n. Chứng minh:
a) − 5 n − 7 + 3 > − 5 m − 7 + 3 ;
b) m + 2 3 > n + 1 3
Cho m > n, chứng minh:
a, m+2>n+2;
b, -2m<-2n;
c, 2m-5>2n-5
d, 4-3m<4-3n
a.m+2>n+2
Ta có: m >n
=>m+2 > n+2 (cộng hai vế với 2)
do đó m+2>n+2
b, -2m < -2n
Ta có: m > n
=> -2m < -2n (nhân hai vế với -2)
do đó -2m<-2n
c,2m-5>2n-5
Ta có: m>n
=>2m>2n (nhân hai vế với 2)
=>2m-5>2n-5 ( cộng hai vế với -5)
do đó 2m-5>2n-5
d,4-3m<4-3n
Ta có :m>n
=> -3m<-3n (nhân hai vế với -3)
=> 4-3m<4-3n (cộng 2 vế với 4)
chứng minh:a, m^2 +n^2 chia hết cho 3 suy ra m và n chia hết cho3
b, m^2 + n^2 chia hết cho 7 suy ra m và n chia hết cho 7
Bài 5: Cho tam giác ABC cân (AB AC).Các đường trung trựccủa AB và AC cắt nhau tại O và cắt BC tại M và N( M và N nằm ngoài đoạn thẳng BC). Chứng minh:
a) Tam giác AMB, và tam giác ANC cân.
b) Tam giác AMC Tam giác ANB .
c) AO là đường trung trực của MN.
cho:
m = 1/2*3/4*5/6*....*99/100
n = 2/3*4/5*6/7*...*100/101
a, Chứng tỏ m<n
b,Tìm m*n
c, chứng tỏ m<1/10
Bài 5: Cho tam giác ABC có BC = 2AB. Gọi M là trung điểm của BC, N là trung điểm của BM. Trên tia đối của tia NA lấy điểm E sao cho AN = EN. Chứng minh:
a)△ NAB =△ NEM
b) MAB là tam giác cân
c) M là trọng tâm của tam giác AEC
a/ cho a+2>5 chứng minh a>3
b/ cho a>3 chứng minh a+2>5
c/ chứng tỏ m>n thì m-n>0
d/ chứng tỏ m-n>0 thì m>n
e/ cho m<n chứng minh m-5<n-4
a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3
b vì a>3 => a+2>3+2 =>a+2>5
c vì m>n =>m-n>n-n=>m-n>0
đ vì m-n=0 =>m-n+n>0+n=>m>n
e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)
vì -4>-5 => m-4>m-5 (2)
từ (1) và (2) =>m-5<n-4
Cho M= 1/2 . 3/4. 5/6.....99/100 & N= 2/3. 4/5. 6/7....100/101
a. Chứng minh M < N
b. Tìm tích M . N
c.Chứng minh M < 1/ 10
a, Xét 1/2 < 2/3 ; 3/4<4/5 ; ............ ; 99/100<100/101
=> 1/2.3/4.......99/100 < 2/3.4/5.........100/101
=> M<N
b, M.N = 1/2.3/4.4/5......99/100.2/3.4/5.5/6......100/101
M.N = 1/2.2/3.3/4.4/5.............99/100.100/101
M.N = 1/101
c, Vì M<N nên M.M < M.N Hay M.M < 1/101 < 1/100
hay M.M < 1/10 . 1/10
=> M < 1/10 (Đpcm)
a) Ta có M.N = 1/2.2/3.3/4.4/5....99/10.10/101 = 1/101
b) Xét M và N đều gồm 50 thừa số mà:
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> M < N
c) Do M < N nên => M.M < M.N (Nhân 2 vế với M)
=> M.M < 1/101 (Vì M.N = 1/101 theo cma)
Mặt khác 1/101 < 1/100
=> M.M < 1/100 = 1/10.1/10
=> M < 1/10
a) Mỗi biểu thức M, N đều có 50 thừa số.
Dễ thấy \(\frac{1}{2}< \frac{2}{3}\);\(\frac{3}{4}< \frac{4}{5}\); ... \(\frac{99}{100}< \frac{100}{101}\)nên M < N
b) M.N = \(\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)=\(\frac{1}{101}\)
c) Vì M < N nên M.M < M.N hay M.M < \(\frac{1}{101}\)<\(\frac{1}{100}\)do đó M.M < \(\frac{1}{10}.\frac{1}{10}\)
Cho M = 1/2 . 3/4 . 5/6 .... 99/100
N = 2/3 . 4/5 . 6/7 .... 100/101
a) chứng minh M < N
b) Tìm tích M
c) Chứng minh M < 1/10
Ai nhanh thì tick
a) Mỗi biểu thức M và N đều có 50 thừa số
Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
Vậy \(M< N\)
b) \(M.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)
\(=\frac{1}{101}\)
c) Vì \(M< N\)nên \(M.M< M.N\)hay \(M.M< \frac{1}{101}< \frac{1}{100}\). Do đó \(M.M< \frac{1}{100}=\frac{1}{10}.\frac{1}{10}\)suy ra \(M< \frac{1}{10}\)( Vì \(M>0\))
a,Chứng minh:A=2^1+2^2+2^3+...+2^2010 chia hết cho 3 và 7.
b,Chứng minh:B=3^1+3^2+3^3+...+2^2010 chia hết cho 4 và 3.
c,Chứng minh:C=5^1+5^2+5^3+...+5^2010 chia hết cho 6 và 31.
d,CHứng minh:D=7^1+7^2+7^3+7^4+...7^2010 chia hết cho 8 và 57.
Bài 1: chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)(n+12)là số chia hết cho 2
Bài 2; cho M= 2 +23+25 + 27 ... + 299. chứng tỏ rằng M chia hết cho 5
Vì n là số tự nhiên nên n có dạng:
n=2k hoặc n= 2k+1 ( k ∈N∈N)
Với n=2k thì: (n+3)(n+12) = (2k+3)(2k+12)
= 2(2k+3)(k+6)⋮⋮2
⇒⇒(n+3)(n+12) ⋮2⋮2
Với n = 2k+1 thì: (n+3)(n+12)= (2k+1+3)(2k+1+12)
= (2k+4)(2k+13)
= 2(k+2)(2k+13)⋮2⋮2
⇒⇒ (n+3)(n+12)⋮2⋮2
Vậy (n+3)(n+12) là số chia hết cho 2 với mọi số tự nhiên n