Số nghiệm của hệ phương trình x 3 = x + 3 y y 3 = y + 3 x là:
A. 2
B. 3
C. 1
D. 4
Cho hệ phương trình x - 2 y = 12 2 x + 3 y = 3 . Số nghiệm của hệ phương trình là
A. 1
B. 0
C. 2
D. 3
Cho hệ phương trình x - 2 y = 12 2 x + 3 y = 3 . Số nghiệm của hệ phương trình là
A. 1
B. 0
C. 2
D. 3
Cho hệ phương trình x − 2 y = 12 2 x + 3 y = 3 . Số nghiệm của hệ phương trình là?
A. 1
B. 0
C. 2
D. 3
Ta có
x − 2 y = 12 2 x + 3 y = 3 ⇔ x = 12 + 2 y 2 12 + 2 y + 3 y = 3 ⇔ x = 12 + 2 y 7 y = − 21 ⇔ y = − 3 x = 12 + 2. − 3 ⇔ x = 6 y = − 3
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (6; −3)
Đáp án: A
Cho hệ phương trình với tham số m:mx+y-3=3
x+my-2m+1=0(m là tham số)
a.giải hệ phương trình với m=-1
b.tìm giá trị nguyên của m để hệ phương trình có nghiệm duy nhất là nghiệm nguyên
a: Khi m=-1 thì hệ phương trình sẽ trở thành:
\(\left\{{}\begin{matrix}-x+y-3=3\\x-y-2\cdot\left(-1\right)+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x+y=6\\x-y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}0x=3\left(vôlý\right)\\x-y=-3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
b: \(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)(1)
=>\(\left\{{}\begin{matrix}mx+y=6\\x+my=2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=6-mx\\x+m\left(6-mx\right)=2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+6m-m^2x=2m-1\\y=6-mx\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(1-m^2\right)=-4m-1\\y=6-mx\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m^2-1\right)=4m+1\\y=6-mx\end{matrix}\right.\)
TH1: m=1
Hệ phương trình (1) sẽ trở thành:
\(\left\{{}\begin{matrix}x\cdot0=4\cdot1+1=5\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
=>Loại
TH2: m=-1
Hệ phương trình (1) sẽ trở thành:
\(\left\{{}\begin{matrix}x\cdot0=-4+1=-3\\y=6-mx\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\varnothing\)
=>Loại
Th3: \(m\notin\left\{1;-1\right\}\)
Hệ phương trình (1) sẽ tương đương với \(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=6-mx=\dfrac{6\left(m^2-1\right)-m\left(4m+1\right)}{m^2-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{4m+1}{m^2-1}\\y=\dfrac{6m^2-6-4m^2-m}{m^2-1}=\dfrac{2m^2-m-6}{m^2-1}\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì m/1<>1/m
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Để x nguyên thì \(4m+1⋮m^2-1\)
=>\(\left(4m+1\right)\left(4m-1\right)⋮m^2-1\)
=>\(16m^2-1⋮m^2-1\)
=>\(16m^2-16+15⋮m^2-1\)
=>\(m^2-1\inƯ\left(15\right)\)
=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=>\(m^2\in\left\{2;0;4;6;16\right\}\)
=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)
mà m nguyên
nên \(m\in\left\{0;2;4;-2;-4\right\}\left(2\right)\)
Để y nguyên thì \(2m^2-m-6⋮m^2-1\)
=>\(2m^2-2-m-4⋮m^2-1\)
=>\(m+4⋮m^2-1\)
=>\(\left(m+4\right)\left(m-4\right)⋮m^2-1\)
=>\(m^2-16⋮m^2-1\)
=>\(m^2-1-15⋮m^2-1\)
=>\(m^2-1\inƯ\left(-15\right)\)
=>\(m^2-1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=>\(m^2\in\left\{2;0;4;6;16\right\}\)
=>\(m\in\left\{\sqrt{2};-\sqrt{2};0;2;-2;\sqrt{6};-\sqrt{6};4;-4\right\}\)
mà m nguyên
nên \(m\in\left\{0;2;4;-2;-4\right\}\left(3\right)\)
Từ (2),(3) suy ra \(m\in\left\{0;2;4;-2;-4\right\}\)
Thử lại, ta sẽ thấy m=4;m=-2 không thỏa mãn x nguyên; m=4;m=-2 không thỏa mãn y nguyên
=>\(m\in\left\{0;2;-4\right\}\)
Cặp số (x; y) = (1; 3) là nghiệm của hệ phương trình bậc nhất hai ẩn nào trong các hệ phương trình sau:
A. x - y = - 2 x + y = 4
B. 2 x - y = 0 x + y = 4
C. 2 x + y = 4 x + y = 4
D. x 2 + y 2 = 10 x - y = 2
Đáp án A
Phương án D không phải là hệ phương trình bậc nhất hai ẩn nên loại D
Cặp số (x; y) = (1; 3) là nghiệm của hệ phương trình bậc nhất hai ẩn nào trong các hệ phương trình sau:
A. x − y = − 2 x + y = 4
B. 2 x − y = 0 x + y = 4
C. x + y = 4 2 x + y = 4
D. x 2 + y 2 = 10 x − y = 2
Hệ phương trình có chứa phương trình bậc hai là hệ phương trình ở đáp án D nên loại D
+ Với hệ phương trình A:
x − y = − 2 x + y = 4 ⇒ 1 − 3 = − 2 1 + 3 − 4 ⇔ − 2 = − 2 4 = 4 (luôn đúng) nên (1; 3) là nghiệm của hệ phương trình x − y = − 2 x + y = 4
+ Với hệ phương trình B: 2 x − y = 0 x + y = 4
Thay x = 1; y = 3 ta được 2.1 − 3 = 0 1 + 3 = 4 ⇔ − 1 = 0 1 + 3 = 4 (vô lý) nên loại B.
+ Với hệ phương trình C: x + y = 4 2 x + y = 4
Thay x = 1; y = 3 ta được 1 + 3 = 4 2.1 + 3 = 4 ⇔ 4 = 4 5 = 4 (vô lý) nên loại C.
Đáp án:A
Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=4\\nx+y=-3\end{matrix}\right.\)
a.Tìm m,n để hệ phương trình có nghiệm là (x ; y) = (-2 ; 3)
b.Tìm m,n để hệ phương trình có vô số nghiệm
\(a,\text{Thay }x=-2;y=3\\ HPT\Leftrightarrow\left\{{}\begin{matrix}3m-2=4\\3-2n=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=3\end{matrix}\right.\\ b,HPT\Leftrightarrow\left\{{}\begin{matrix}x=4-my\\n\left(4-my\right)+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4-my\\4n-mny+y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=4-my\\y\left(mn-1\right)=4n+3\end{matrix}\right.\)
HPT có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}mn-1=0\\4n+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)
Bài tập 1 Cho hệ phương trình (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x = và y = .
3. Tìm nghiệm của hệ phương trình (1) theo m.
Cho phương trình x2 + 2(2m-1)x + 3(m2 - 1) = 0 (m là tham số)
a) Với giá trị nào của tham số m thì phương trình có nghiệm?
b) Trong trường hợp phương trình có hai nghiệm x1 và x2, dùng hệ thức Vi-ét, hãy tìm hệ thức liên hệ giữa hai nghiệm x1 và x2 của phương trình không phụ thuộc vào m.
\(x^2+2\left(2m-1\right)x+3\left(m^2-1\right)=0\)
\(a,\) Để pt có nghiệm thì \(\Delta\ge0\)
\(\Rightarrow\left[2\left(2m-1\right)\right]^2-4\left[3\left(m^2-1\right)\right]\ge0\)
\(\Rightarrow4\left(4m^2-4m+1\right)-4\left(3m^2-3\right)\ge0\)
\(\Rightarrow16m^2-16m+4-12m^2+12\ge0\)
\(\Rightarrow4m^2-16m+16\ge0\)
\(\Rightarrow\left(2m-4\right)^2\ge0\)
Vậy pt có nghiệm với mọi m.
b, Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=-2\left(2m-1\right)\\x_1x_2=3\left(m^2-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-4m+2\\x_1x_2=3m^2-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{-2+x_1+x_2}{4}\\x_1x_2=3\left(\dfrac{-2+x_1+x_2}{4}\right)^2-3\end{matrix}\right.\)
Vậy......
Cho hệ phương trình ( m + 2 ) x + y = 2 m − 8 m 2 x + 2 y = − 3 . Tìm các giá trị của tham số m để hệ phương trình nhận cặp số (−1; 3) làm nghiệm
A. m = 0
B. m = −2
C. m = −3
D. m = 3
Để hệ phương trình ( m + 2 ) x + y = 2 m − 8 m 2 x + 2 y = − 3 nhận cặp số (−1; 3) làm nghiệm thì ( m + 2 ) . ( − 1 ) + 3 = 2 m − 8 m 2 ( − 1 ) + 2.3 = − 3 ⇔ − m − 2 + 3 = 2 m − 8 − m 2 + 6 = − 3 ⇔ 3 m = 9 m 2 = 9 ⇔ m = 3 m = 3 m = − 3 ⇔ m = 3
Vậy m = 3
Đáp án: D