Giá tri đúng của lim x → 3 x - 3 x - 3
A. Không tồn tại.
B. 0.
C. 1.
D. +∞.
Giá trị của các giới hạn :
a, lim\(\left(\sqrt[3]{3x^3-1}+\sqrt{x^2+1}\right)\) khi x→\(-\infty\)
b, lim\(\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\) khi x→\(+\infty\)
c, lim\(\left(\sqrt[3]{2x-1}-\sqrt[3]{2x+1}\right)\) khi x→\(+\infty\)
a/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2+1-x^2}{\sqrt{x^2+1}-x}+\lim\limits_{x\rightarrow-\infty}\dfrac{3x^3-1-x^3}{\sqrt[3]{\left(3x^3-1\right)^2}+x\sqrt[3]{3x^3-1}+x^2}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}}{-\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}-\dfrac{x}{x}}+\lim\limits_{x\rightarrow-\infty}\dfrac{-\dfrac{1}{x^2}}{\dfrac{\sqrt[3]{\left(3x^3-1\right)^2}}{x^2}+\dfrac{x\sqrt[3]{3x^3-1}}{x^2}+\dfrac{x^2}{x^2}}=0\)
b/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+x-x^2}{\sqrt{x^2+x}+x}+\lim\limits_{x\rightarrow+\infty}\dfrac{x^3-x^3+x^2}{x^2+x\sqrt[3]{x^3-x^2}+\sqrt[3]{\left(x^3-x^2\right)^2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}}+\dfrac{x}{x}}+\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x^2}{x^2}}{\dfrac{x^2}{x^2}+\dfrac{x\sqrt[3]{x^3-x^2}}{x^2}+\dfrac{\sqrt[3]{\left(x^3-x^2\right)^2}}{x^2}}\)
\(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
c/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{2x-1-2x-1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{4x^2-1}+\sqrt[3]{\left(2x+1\right)^2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{2}{x^{\dfrac{2}{3}}}}{\dfrac{\sqrt[3]{\left(2x-1\right)^2}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{4x^2-1}}{x^{\dfrac{2}{3}}}+\dfrac{\sqrt[3]{\left(2x+1\right)^2}}{x^{\dfrac{2}{3}}}}=0\)
Check lai ho minh nhe :v
giá trị của \(\lim\limits_{x\to -∞} f(x)=\dfrac{\sqrt{x^2-3}}{x+3}\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-3}}{x+3}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2\left(1-\dfrac{3}{x^2}\right)}}{x+3}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x\cdot\sqrt{1-\dfrac{3}{x^2}}}{x\left(1+\dfrac{3}{x}\right)}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{1-\dfrac{3}{x^2}}}{1+\dfrac{3}{x}}\)
\(=\dfrac{-\sqrt{1-0}}{1+0}=-\dfrac{1}{1}=-1\)
tìm x biết
a giá tri tuyệt đối của x + 1/2 = 3/4
b giá trị tuyệt đối của x - 7/10 =1/5
c giá tri tuyệt đối của 2,5 - x = 1,3
d 1/2 - giá trị tuyệt đối của 2x - 1 =5
chọn kết quả đúng của \(\lim\limits_{x\to +∞} f(x)=\dfrac{1+3x}{\sqrt{2x^2+3}}\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{1+3x}{\sqrt{2x^2+3}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{3+\dfrac{1}{x}}{\sqrt{2+\dfrac{3}{x^2}}}=\dfrac{3+0}{\sqrt{2+0}}=\dfrac{3}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{2}}{2}\)
Số các giá trị cua x thoa mãn : tri tuyet doi cua x-5/tri tuyet doi cua x-3=tri tuyet doi cua x-1/tri tuyet doi cua x-3
Tùy theo giá trị của tham số m, tính giới hạn:
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+2x^2+1}-\sqrt{4x^2+2x+3}+mx\right)\)
Xet \(m\ne-3\)
\(=\lim\limits_{x\rightarrow-\infty}x\left(\sqrt[3]{1}+\sqrt{4}+m\right)=x\left(3+m\right)\)
\(=\left[{}\begin{matrix}-\infty\left(m>-3\right)\\+\infty\left(m< -3\right)\end{matrix}\right.\)
Xet \(m=-3\)
\(=\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+2x^2+1}-x-2x-\sqrt{4x^2+2x+3}\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3+2x^2+1-x^3}{\sqrt[3]{\left(x^3+2x^2+1\right)^2}+x\sqrt[3]{x^3+2x^2+1}+x^2}-\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2-4x^2-2x-3}{2x-\sqrt{4x^2+2x+3}}\)
\(=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)
Giá tri đúng của lim x → 3 x − 3 x − 3
A. Không tồn tại
B. 0
C. 1
D. + ∞
Chọn A
lim x → 3 + x − 3 x − 3 = lim x → 3 + x − 3 x − 3 = 1 lim x → 3 − x − 3 x − 3 = lim x → 3 − − x + 3 x − 3 = − 1 ⇒ lim x → 3 + x − 3 x − 3 ≠ lim x → 3 − x − 3 x − 3
Vậy không tồn tại giới hạn trên
Cho hàm số y = f(x) có lim x → + ∞ f ( x ) = 3 và lim x → - ∞ f ( x ) = - 3 Khẳng định nào sau đây là khẳng định đúng?
A. Đồ thị hàm số đã cho có đúng một tiệm cận ngang
B. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng x = 3 và x = -3
C. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng y = 3 và y = -3
D. Đồ thị hàm số đã cho không có tiệm cận ngang
Đáp án C.
Ta có:
=> y = 3, y = -3 là hai tiệm cận ngang.
Giá trị tuyệt đối của x-1 + giá trị tuyệt đối của x-2 +giá tri tuyệt đối của x-3 có giá trị nhỏ nhất là bao nhiêu
| x - 1 | + | x - 2 | + | x - 3 |
= | x - 2 | + ( | x - 1 | + | x - 3 | )
Ta có :
+) | x - 2 | ≥ 0 ∀ x (1)
+) | x - 1 | + | x - 3 |
= | x - 1 | + | -( x - 3 ) |
= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2 (2)
Cộng (1) với (2) theo vế
=> | x - 2 | + ( | x - 1 | + | x - 3 | ) ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left(x-1\right)\left(3-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\1\le x\le3\end{cases}}\Leftrightarrow x=2\)
Vậy GTNN của biểu thức = 2 <=> x = 2
Cảm ơn bạn nha. cho