Cho số phức z = m + 1 1 + m 2 i − 1 , m ∈ ℝ . Số các giá trị nguyên của m để z − i < 1 là
A. 0
B. 1
C. 4
D. Vô số
cho số phức z thỏa mãn (1+i)z+\(\overline{z}\)=i . tìm mô- đun của số phức w= 1+i+z
tìm mô đum của số phức z biết z^2 (1-i) +2(\(\overline{z}\))^2 (1+i) = 21-i
bài 1) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(\left(1+i\right)z+\overline{z}=i\Leftrightarrow\left(1+i\right)\left(a+bi\right)+\left(a-bi\right)=i\)
\(\Leftrightarrow a-b+ai+bi+a-bi=i\Leftrightarrow2a-b+ai=i\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-b=0\\a=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow z=1+2i\) \(\Rightarrow W=1+i+z=1+i+1+2i=2+3i\)
\(\Rightarrow\) \(modul\) của số phức \(W\) là : \(\left|W\right|=\sqrt{2^2+3^2}=\sqrt{13}\)
vậy .............................................................................................................
bài 2) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)
ta có : \(z^2\left(1-i\right)+2\overline{z}^2\left(1+i\right)=21-i\)
\(\Leftrightarrow\left(a+bi\right)^2\left(1-i\right)+2\left(a-bi\right)^2\left(1+i\right)=21-i\)
\(\Leftrightarrow\left(a^2+2abi-b^2\right)\left(1-i\right)+2\left(a^2-2abi-b^2\right)\left(1+i\right)=21-i\)\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2\left(a^2+a^2i-2abi+2ab-b^2-b^2i\right)=21-i\)
\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)
\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)\(\Leftrightarrow3a^2+6ab-3b^2+a^2i-2abi-b^2i=21-i\)
\(\Leftrightarrow\left(3a^2+6ab-3b^2\right)+\left(a^2-2ab-b^2\right)i=21-i\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\a^2-2ab-b^2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\3a^2-6ab-3b^2=-1\end{matrix}\right.\)
\(\Rightarrow-ab=-2\Leftrightarrow-a^2b^2=-4\) và \(a^2-b^2=3\)
\(\Rightarrow a^2\) và \(-b^2\) là nghiệm của phương trình \(X^2-3X-4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\-b^2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\b^2=1\end{matrix}\right.\)
\(\Rightarrow\) \(modul\) của số phức \(z\) là \(\left|z\right|=\sqrt{a^2+b^2}=\sqrt{4+1}=\sqrt{5}\)
vậy ...................................................................................................................
hôm sau phân câu 1 ; câu 2 rỏ ra nha bạn . cho dể đọc thôi
Cho số phức thỏa mãn ( 1 + i ) z + 2 + ( 1 + i ) z - 2 = 4 2 .
Gọi m = m a x z ; n = m i n z và số phức w=m+ni. Tính w 2018 .
A. 4 1009
B. 5 1009
C. 6 1009
D. 2 1009
Đáp án C
Phương pháp
Chia cả 2 vế cho 1 + i và suy ra đường biểu diễn của số phức z
Cách giải
Tập hợp các điểm z là elip có độ dài trục lớn là 2a=4 a=2
và hai tiêu điểm
Cho số phức z thỏa (2i-1)z=4-3i.Tìm điểm M là điểm biểu diễn của số phức z -
A. M(2 ;1)
B. M(2 ;-1)
C. M(-2;1)
D. M(-2;-1)
Cho số phức z = m + 1 1 + m ( 2 i - 1 ) ( m ∈ ℝ ) . Số các giá trị nguyên của m để z - i < 1 là
A. 0
B. 1
C. 4
D. Vô số
Cho số phức z thỏa mãn: z ( 1 + 2 i ) - z ¯ ( 2 - 3 i ) = - 4 + 12 i . Tìm tọa độ điểm M biểu diễn số phức z.
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
Cho số phức z thỏa mãn 1 + z 2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn.
B. Parabol.
C. Một đường thẳng.
D. Hai đường thẳng.
Cho số phức z thỏa mãn 1 + z 2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Đường tròn
B. Parabol
C. Một đường thẳng
D. Hai đường thẳng