Thu gọn đa thức 2 x 5 y 2 - 3 x 3 y + 8 + 9 x y - 2 x 5 y 2 + 4 x 3 y - 4 x y - 7
A. x 2 y 5 - x 3 y + 5 x y + 1
B. x 3 y + 5 x y + 1
C. x 3 y - 5 x y + 1
D. - 3 x 3 y + 5 x y + 1
Bài 3: 1) Thu gọn và tìm bậc đa thức N = 2x3 y 2 + x3 y - 6 x2 y - x 3 y 2 + 6 x2 y + 3x3 y
2) Thu gọn và xác định bậc đa thức M = 4 5 x 3 y 5 – 0,7xy + 2 5 x 3 y 5 – xy + 1 4 x 3 y 5
3) Thu gọn và tính giá trị đa thức tại x = -1, y = 1
Đề lỗi rồi kìa, bạn viết lại đi tridung
1) Thu gọn và tìm bậc đa thức N = 2x mu 3 y mu 2 + x mu 3 y - 6 x mu 2 y - x mu 3 y mu 2 + 6 x mu 2 y + 3 x mu 3 y
2) Thu gọn và xác định bậc đa thức M = 4 phan 5 x mu 3 y mu 5 – 0,7xy + 2 phan 5 x mu 3 y mu 5 – xy + 1 phan 4 x mu 3 y mu 5
3) Thu gọn và tính giá trị đa thức tại x = -1, y = 1
Câu 2: (1,5 điểm) Hãy thu gọn các đơn thức,đa thức sau:
a) A = - ( 6 . 8 x x 7 6 3 y y ) ( 3 )
b) B xy xy xy xy = - - + + + 7 2 8 5 6
Bài 2: Cho đa thức A= -4\(x^5\)\(y^3\)+ 6\(x^4\)\(y^3\)- 3\(x^2\)\(y^3\)\(z^2\)+ 4\(x^5\)\(y^3\)- \(x^4y^3\)+ 3\(x^2y^3z^2\)- 2\(y^4\)+22
a) Thu gọn rồi tìm bậc của đa thức A
b) Tìm đa thức B, biết rằng: B-\(5y^4\)=A
`a)`
`A=-4x^5y^3+6x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+3x^2y^3z^2-2y^4+22`
`A=(-4x^5y^3+4x^5y^3)+(6x^4y^3-x^4y^3)-(3x^2y^3z^2-3x^2y^3z^2)-2y^4+22`
`A=5x^4y^3-2y^4+22`
`->` Bậc: `7`
`b)B-5y^4=A`
`=>B=A+5y^4`
`=>B=5x^4y^3-2y^4+22+5y^4`
`=>B=5x^4y^3+3y^4+22`
đa thức thu gọn là gì ? Áp dụng thu gọn đa thức sau
A= x8 + x3y5 + xy7 - x3y5 + 10 - xy7
Cho 2 đa thức
M= 5xyz - 5x2 + 8xy +5
N= 5x2 + 2xyz - 8xy - 7 + y2
Tính M+N và M-N
* Đa thức thu gọn là đa thức không còn hai hạng tử nào đồng dạng
A = (xy7- xy7) + (x3y5-x3y5)+x8+10
A = x8+10
* M + N
= (5xyz -5x2 + 8xy + 5)+(5x2+2xyz-8xy-7+y2)
= 5xyz - 5x2 +8xy +5+5x2 +2 xyz - 8xy -7 + y2
= ( 5xyz + 2xyz ) + ( -5x2 +5x2) + ( 8xy - 8xy ) + ( 5-7) +y2
= 7xyz - 2 + y2
* M - N
= ( 5xyz - 5x2 +8xy +5) - ( 5x2 + 2xyz - 8xy -7 +y2)
= 5xyz - 5x2 + 8xy + 5 - 5x2 - 2xyz + 8xy + 7 - y2
= ( 5xyz - 2xyz) + ( -5x2 - 5x2) + ( 8xy + 8xy) + ( 5+7) -y2
= 3xyz - 10x2 +16xy +12 -y2
Cho đa thức \(P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z.\)
a) Thu gọn và tìm bậc của đa thức P;
b) Tính giá trị của đa thức P tại x=-4;y=2 và z=1.
a)
\(\begin{array}{l}P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z\\ = \left( {8{x^2}{y^2}z - 5{x^2}{y^2}z - 3{x^2}{y^2}z} \right) - 2xyz + 5{y^2}z + {x^2}{y^2}\\ = - 2xyz + 5{y^2}z + {x^2}{y^2}\end{array}\)
Hạng tử có bậc cao nhất là \({x^2}{y^2}\) có bậc là 2 + 2 = 4 nên bậc của đa thức là 4.
b) Thay \(x = - 4;y = 2;z = 1\) vào P ta được \(P = - 2.\left( { - 4} \right).2.1 + {5.2^2}.1 + {\left( { - 4} \right)^2}{.2^2} = 16 + 20 + 64 = 100.\)
Thu gọn đa thức: \(R = {x^3} - 2{{\rm{x}}^2}y - {x^2}y + 3{\rm{x}}{y^2} - {y^3}\).
Ta có:
\(\begin{array}{l}R = {x^3} - 2{{\rm{x}}^2}y - {x^2}y + 3{\rm{x}}{y^2} - {y^3}\\R = {x^3} + \left( { - 2{{\rm{x}}^2}y - {x^2}y} \right) + 3{\rm{x}}{y^2} - {y^3}\\R = {x^3} - 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} - {y^3}\end{array}\)
a/ Thu gọn đơn thức (12/5.x^4 y^2).(5/9 xy^3xy) đó xác định phần hệ số, phần biến và bậc của đơn thức: b/ Tính giá trị của bieur thức 2 3 A x xy y = + − tại x y = = − 2; 1 c/ Tìm đa thức M, biết 2 2 2 2 (2 3 3 7) ( 3 7) x y xy x M x y xy y − + + − = − + + d/ Cho đa thức 2 P x ax x ( ) 2 1 = − + Tìm a, biết: P(2) 7 = Câu 3. (1,5 điểm) Cho các đa thức: A(x) = x3 + 3x2 – 4x – 12 B(x) = x3 – 3x2 + 4x + 18 a. Hãy tính: A(x) + B(x) và A(x) – B(x) b. Chứng tỏ x = – 2 là nghiệm của đa thức A(x) nhưng không là nghiệm của đa thức B(x)
Câu 3:
a: A(x)=x^3+3x^2-4x-12
B(x)=x^3-3x^2+4x+18
A(x)+B(x)
=x^3+3x^2-4x-12+x^3-3x^2+4x+18
=2x^3+6
A(x)-B(x)
=x^3+3x^2-4x-12-x^3+3x^2-4x-18
=6x^2-8x-30
b: A(-2)=(-8)+3*4-4*(-2)-12
=-20+3*4+4*2=0
=>x=-2 là nghiệm của A(x)
B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10
=>x=-2 ko là nghiệm của B(x)
Cho đa thức \(N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\).
a) Thu gọn đa thức N.
b) Xác định hệ số và bậc của từng hạng tử (tức là bậc của từng đơn thức) trong dạng thu gọn của N.
a)
\(\begin{array}{l}N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\\ = \left( {5{y^2}{z^2} - 2{y^2}{z^2}} \right) + \left( { - 2x{y^2}z + x{y^2}z} \right) + \left( {\dfrac{1}{3}{x^4} + \dfrac{2}{3}{x^4}} \right)\\ = 3{y^2}{z^2} - x{y^2}z + {x^4}\end{array}\)
b) Đa thức có 3 hạng tử là: \(3{y^2}{z^2}; - x{y^2}z;{x^4}\)
Xét hạng tử \(3{y^2}{z^2}\) có hệ số là 3, bậc là 2+2=4.
Xét hạng tử \( - x{y^2}z\) có hệ số là -1, bậc là 1+2+1=4.
Xét hạng tử \({x^4}\) có hệ số là 1, bậc là 4.