Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chi Lưu Quỳnh
Xem chi tiết
Nguyễn Toàn
Xem chi tiết
Nguyễn Toàn
21 tháng 4 2022 lúc 21:15

giúp mik vs

 

lính thủy lục túi
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 1 2024 lúc 13:39

a: Ta có: \(AM=\dfrac{1}{2}AC\)

\(AB=\dfrac{1}{2}AC\)

Do đó: AM=AB

Xét ΔABC và ΔAEB có

\(\dfrac{AB}{AE}=\dfrac{AC}{AB}\left(=2\right)\)

\(\widehat{BAC}\) chung

Do đó: ΔABC~ΔAEB

TRẦN BÁ LỘC
Xem chi tiết
Huỳnh Thị Bích Tuyền
13 tháng 5 2015 lúc 20:18

b/ Xét 2 TG ABC và TG AEK,ta có:
A chung

E=B (2 TG = nhau câu a)

AB=AE (gt)

=>TG ABC=TG AEK (g-c-g)

=>AK=AC (cặp cạnh tương ứng)

Ta có :AK=AB+AC

AC=AE+EC

Mà AC=Ak

AB=AE

=>BK=EC

Xét 2 TG DBK và TG DEC,ta có:

BK=EC(cmt)

Góc BDK = góc EDC (đối đỉnh)

BD=ED(câu a)

=>TG DBK=TG DEC (c-g-c)

c/Vì AK=AC (TG AKE=TG ACB) nên TG AKC cân tại A

 

Huy
4 tháng 5 2016 lúc 20:54

Cho tam giac ABC có AB < AC; AD là phân giác của goc A. Trên cạnh AC lấy điểm E sao  cho AB = AE.

 a. Chứng minh tam giac ABD = tam giac AED

 b. Trên tia AB lấy điểm F sao cho AF = AC. Chứng minh tam giac FBD = tam giac CED và DF = DC  

c. Chứng minh AD vuong goc voi CE  d. Chứng minh BE // CF.

( giup minh voi cac ban oi )

Toàn Quyền Nguyễn
6 tháng 1 2017 lúc 19:58

b/ Xét 2 TG ABC và TG AEK,ta có:
A chung

E=B (2 TG = nhau câu a)

AB=AE (gt)

=>TG ABC=TG AEK (g-c-g)

=>AK=AC (cặp cạnh tương ứng)

Ta có :AK=AB+AC

AC=AE+EC

Mà AC=Ak

AB=AE

=>BK=EC

Xét 2 TG DBK và TG DEC,ta có:

BK=EC(cmt)

Góc BDK = góc EDC (đối đỉnh)

BD=ED(câu a)

=>TG DBK=TG DEC (c-g-c)

c/Vì AK=AC (TG AKE=TG ACB) nên TG AKC cân tại A

hung nguyen
Xem chi tiết
Nguyên Hoàng
4 tháng 5 2023 lúc 20:56

câu hỏi chưa rõ

 

Hieu Ngoc Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 1:01

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 1:04

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 1:05

c) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{15}=\dfrac{CD}{25}=\dfrac{AD+CD}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)

Do đó: AD=7,5cm; CD=12,5cm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 5 2017 lúc 8:15

Takami Akari
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2021 lúc 11:18

a) Xét ΔABO vuông tại O và ΔAEO vuông tại O có

AO chung

\(\widehat{BAO}=\widehat{EAO}\)(AO là tia phân giác của \(\widehat{BAE}\))

Do đó: ΔABO=ΔAEO(cạnh góc vuông-góc nhọn kề)

Nguyễn Lê Phước Thịnh
11 tháng 5 2021 lúc 11:18

b) Ta có: ΔABO=ΔAEO(cmt)

nên AB=AE(Hai cạnh tương ứng)

Xét ΔABE có AB=AE(cmt)

nên ΔABE cân tại A(Định nghĩa tam giác cân)

Nguyễn Lê Phước Thịnh
11 tháng 5 2021 lúc 11:21

c) Xét ΔABD và ΔAED có 

AB=AE(cmt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

AD chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: DB=DE(Hai cạnh tương ứng)

Ta có: AB=AE(cmt)

nên A nằm trên đường trung trực của BE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DB=DE(cmt)

nên D nằm trên đường trung trực của BE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AD là đường trung trực của BE(Đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2018 lúc 17:32

Vì BD là đường phân giác của A B C ^ nên:  A D D C = A B B C

Suy ra: A D D C + A D = A B B C + A B  (theo tính chất dãy tỉ số bằng nhau)

⇒ A D A C = A B B C + A B

Mà tam giác ABC cân tại A nên AC = AB = 15cm

Đáp án: C