Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phạm Công Viễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2022 lúc 22:24

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)

\(=1-3ab+3ab\cdot\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=1-3ab-6a^2b^2+6a^2b^2=1-3ab\)

Nguyễn Hoàng Minh
3 tháng 1 2022 lúc 22:26

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\\ M=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\\ M=1-3ab+3ab\left(a^2+b^2+2ab\right)=1-3ab+3ab\left(a+b\right)^2\\ M=1-3ab+3ab=1\)

Bibi2211>>
Xem chi tiết
Linh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2020 lúc 12:26

Ta có: \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\cdot\left(a+b\right)\)

\(\Leftrightarrow M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)

\(\Leftrightarrow M=a^2-ab+b^2+3ab\left(a^2+2ab+b^2\right)\)

\(\Leftrightarrow M=a^2-ab+b^2+3ab\cdot\left(a+b\right)^2\)

\(\Leftrightarrow M=a^2-ab+3ab+b^2\)

\(\Leftrightarrow M=\left(a+b\right)^2=1^2=1\)

Vậy: Khi a+b=1 thì M=1

❖ASHツ
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2023 lúc 14:22

M=(a+b)^3-3ab(a+b)+3ab[(a+b)^2-2ab]+6a^2b^2

=1-3ab+3ab(1-2ab)+6a^2b^2

=1

Mai Phú Sơn
Xem chi tiết
Phạm Tuấn Đạt
29 tháng 12 2018 lúc 15:35

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab-2ab\right)+6a^2b^2\left(a+b\right)\)

\(M=a^2+2ab+b^2-3ab+3ab-6a^2b^2+6a^2b^2\)

\(M=\left(a+b\right)^2=1\)

Nguyễn Xuân BẢo
1 tháng 4 2019 lúc 20:19

ngu lắm sơn à

Lãnh Hàn Thiên Kinz
19 tháng 7 2020 lúc 10:37

bạn Nguyễn Xuân Bảo có làm đc ko mà nói bạn đăng bài ngu :)) đây là trang học toán thì bạn ấy đăng bài ko bt làm lên thì đã sao :>

Khách vãng lai đã xóa
phạm hiển vinh
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
12 tháng 3 2020 lúc 22:12

Câu hỏi tương tự có nha

Khách vãng lai đã xóa
phạm hiển vinh
12 tháng 3 2020 lúc 22:19

oki bạn

Khách vãng lai đã xóa
Nguyễn hoàng giáp
Xem chi tiết
hghghghg
Xem chi tiết
Mai Anh
13 tháng 2 2018 lúc 7:09

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab[\left(a+b\right)^2-2ab]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)[\left(a+b\right)^2-3ab]+3ab[\left(a+b\right)^2-2ab+6a^2b^2\left(a+b\right)\)

\(=1-ab+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

\(=1\)

Phong Linh
10 tháng 6 2018 lúc 10:38

ta có : M=2.(a^3  +b^3) -3.(a^2 + b^2)

       <=>M=2.(a+b)(a^2  -ab  +b^2)  - 3(a^2  +3b^2)

      <=>M=2(a^2  -ab  +b^2)  -3(a^2 +b^2)               vì a+b=1(gt)

      <=>M=-(a^2 +b^2 +2ab)

      <=>M=-(a+b)^2

      <=>M=-1  (vì a+b=1)

Vanh Leg
22 tháng 12 2018 lúc 19:43

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

Trần Ngọc Hoàng
Xem chi tiết
nguyễn thị huyền trang
23 tháng 10 2016 lúc 21:38

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

Thái Viết Nam
23 tháng 10 2016 lúc 14:42

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

nguyen van bi
7 tháng 12 2020 lúc 19:20

bạn hỏi từ từ thôi

Khách vãng lai đã xóa