Rút gọn biểu thức: M = x 3 + y 3 + z 3 - 3 x y z x 2 + y 2 + z 2 - x y - y z - x z
Rút gọn biểu thức M=(x^3+y^3+z^3-3xyz)/( x^2+y^2+z^2-xy-yz-zx)
\(M=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{x^2+y^2+z^2-xy-yz-xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{x^2+y^2+z^2-xy-yz-xz}\)
\(=x+y+z\)
Rút gọn biểu thức M=(x^3+y^3+z^3-3xyz)/ x^2+y^2+z^2-xy-yz-zx
thay 1 vào tử, thấy:
căn(5-x) = căn 4= 2;
căn bậc 3(x^2+7)=căn bậc 3 của 8=2
=> thêm bớt 2.
Bài làm:
lim {[căn(5-x)-2]-[căn bậc 3(x^2-7)-2]}/(x^2-1)
tương đương: lim [căn(5-x)-2]/(x^2-1) - lim [căn bậc 3(x^2-7)-2]/(x^2-1)
Tính lim từng số hạng như thường.
Rút gọn biểu thức:
A= (x+y+z)^3-(x+y-z)^3-(-x+y+z)^3-(x-y+z)^3
Ta sử dụng ẩn phụ:
\(\hept{\begin{cases}a=x+y-z\\b=y+z-x\\c=x+z-y\end{cases}}\)=> x+y+z=a+b+c
Khi đó :
A= (x+y+z)^3-(x+y-z)^3-(-x+y+z)^3-(x-y+z)^3=(a+b+c)^3+a^3+b^3+c^3=3(a+b)(b+c)(c+a)=3*2y*2z*2x=24xyz
rút gọn biểu thức
3(x-y) + (y-2x +z) - ( x + 2y -z )
=3x-3y+y-2x+z-x-2y+z
=(3x-2x-x)-(3y-y+2y)+(z+z)
=0-4y+2z
=2z-4y
rút gọn =2*z-4*y
phân tích nhân tử=2*(z-2*y)
cho biểu thức A = (x-y + z ) -(-z-y -x ) - 2y
a, rút gọn biểu thức A
b, tính giá trị của nó với x= 3. y=-1 , z=2
a) A = x - y + z + z + y + x - 2y
A = (x + x) + (-y + y) + (z + z) - 2y
A = 2x + 0 + 2z - 2y
A = 2 .(x + z - y)
b) Thay x = 3 ; y = -1 ; z = 2 vào biểu thức A , ta được :
A = 2 .[3 + 2 - (-1)]
A = 12
Vậy A = 12
Chúc bạn học tốt !
Cho x/a= y/b= z/c với a, b, c, x, y, z không bằng 0
Rút gọn biểu thức B = ( a^2.x + b62.y + c^2.z ) ^3 / x^3 + y^ 3 + z^3
rút gọn biểu thức \(G=\left(x+y+z\right)^3-\left(x+y-z\right)^3-\left(-x+y+z\right)^3-\left(x-y+x\right)^3\)
rút gọn biểu thức
\(\frac{x^3+y^3+z^3-3xyz}{\left(x+y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\)
Dat (x-y)2+(y-z)2+(x-z)2=A
=(x+y)3+z3-3x2y-3xy2-3xyz / A
=(x+y+z).(x2+2xy+y2-xy-yz+z2)-3xy(x+y+z) / A
=(x+y+z).(x2+y2+z2-xy-yz-xz) /A
=2(x+y+z).(x2+y2+z2-xy-yz-xz) /2A
=(x+y+z)[ (x2-2xy+y2)+(y2-2yz+z2)+(x2-2xz+z2) / 2A
=(x+y+z).[ (x-y}2+(y-z)2+(x-z)2 ] /2A
=(x+y+z). A /2A
=x+y+z /2
Rút gọn biểu thức sau
a) (a+b)^2-(a-b)^2
b)(a+b)^3-(a-b)^3-2ab^3
c)(x+y+z)^2-2(x+y+z)(x+y)(x+y)^2
Em làm thử nếu sai thì thôi ạ (vì mới học lớp 6)
a)
Ta có:
\(\left(a+b\right)^2-\left(a-b\right)^2=a^2.b^2-a^2:b^2\)
\(=a^2.b^2-a^2.\frac{1}{b^2}=a^2.\left(b^2-\frac{1}{b^2}\right)\)
Chắc thế ạ, em chỉ làm 1 phần vì sợ sai
a)(a+b)2-(a-b)2=(a+b+a-b)(a+b-a+b)=2a.2b=4ab
b)(a+b)3-(a-b)3-2ab3
=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]-2ab3
=2a(a2+2ab+b2+a2-b2+a2-2ab+b2)-2ab3
=2a(3a2+b2)-2ab3
=6a3+2ab2-2ab3
c)(x+y+z)2-2(x+y+z)(x+y)+(x+y)2
=(x+y+z-x-y)2=z2
cho x3+y3+z3=3xyz. Rút gọn biểu thức:
A=\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)