Phần tự luận (8 điểm)
Phân tích thành nhân tử
a ) x 6 – x 4 + 2 x 3 + 2 x 2 b ) 4 x 4 + y 4
Phân tích đa thức thành nhân tử a) x^4+x^2+2x+6 b) x^8+3x^4+4
a: \(x^4+x^2+2x+6\)
\(=x^4-2x^3+3x^2+2x^3-4x^2+6x+2x^2-4x+6\)
\(=\left(x^2-2x+3\right)\left(x^2+2x+2\right)\)
Phân tích đa thức 2x-8 thành nhân tử, ta được: A. -2(x-4) B.2(x-6) C 2(x-8) D. 2(x-4)
phân tích đa thức thành nhân tử
(x+2)(x+4)(x+6)(x+8)-16
x^8+x^6+x^4+x^2+1 hãy phân tích thành nhân tử
1) phân tích đa thức thành nhân tử
a) 4x^4 - 32x^2 + 1
b) x^6 + 27
c) 3(x^4 + x^2 + 1) - (x^2 - x + 1)
d) (2x^2 -4)^2 + 9
2) phân tích đa thức thành nhân tử
a) 4x^4 + 1
b) 64x^4 + y^4
c) x^8 + x^4 + 1
a, Cách 1 : \(x^2+5x+6=x^2+2x+3x+6=\left(x+2\right)\left(x+3\right)\)
Cách 2 : \(x^2+5x+6=x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}+6\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}=\left(x+2\right)\left(x+3\right)\)
b, Cách 1 : \(x^2-x-6=x^2+2x-3x-6=\left(x-3\right)\left(x+2\right)\)
Cách 2 : \(x^2-x-6=x^2-x+\frac{1}{4}-\frac{1}{4}-6=\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=\left(x-3\right)\left(x+2\right)\)
c, Cách 1 : \(x^2+6x+8=x^2+4x+2x+8=\left(x+2\right)\left(x+4\right)\)
Cách 2 : \(x^2+6x+8=x^2+6x+9-1=\left(x+3\right)^2-1=\left(x+2\right)\left(x+4\right)\)
d, Cách 1 : \(x^2-2x-8=x^2+2x-4x-8=\left(x-4\right)\left(x+2\right)\)
Cách 2 : \(x^2-2x-8=x^2-2x+1-9=\left(x-1\right)^2-9=\left(x-4\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử:
( x + 2 ) ( x + 4 ) ( x + 6 ) ( x + 8 ) + 16
Ta có:
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16\right)+8\left(x^2+10x+16\right)+16\)
\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)
\(=\left(x^2+10x+16+4\right)^2=\left(x^2+10+20\right)^2\)
k nha!!
\(\text{( x + 2 ) ( x + 4 ) ( x + 6 ) ( x + 8 ) + 16}\)
\(\text{Phân tích thành nhân tử :}\)
\(\left(x^2+10x+20\right)^2\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)+16\)(*)
Đặt \(t=x^2+10x+20\)
(*)\(=\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
\(=\left(x^2+10x+20\right)\left(x^2+10x+20\right)\)
(x+2)*(x+4)*(x+6)+(x+8)+2008
phân tích đa thức thành nhân tử
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+2008\)
Đặt \(x^2+10x+20=t\)
Khi đó phương trình tương đương với:
\(\left(t-4\right)\left(t+4\right)+2008=t^2-16+2008=t^2+1992\)
Không hiểu phân tích ra như thế nào ?????
Phân tích thành nhân tử
\(x^2 +2x-8\)
\(x^2 +5x+6\)
\(4x^2 -12x+8\)
\(x^2 -xy - \frac{3}{4} y^2\)
\(x^2+2x-8\)
\(=x^2+4x-2x-8\)
\(=x^2\left(x+4\right)-2\left(x+4\right)\)
\(=\left(x^2-2\right)\left(x+4\right)\)
\(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
\(4x^2-12x+8\)
\(=4x^2-4x-8x+8\)
\(=4x\left(x-1\right)-8\left(x-1\right)\)
\(=\left(4x-8\right)\left(x-1\right)\)
\(x^2-xy-\dfrac{3}{4}y^2\)
\(=x^2-\dfrac{3}{2}xy+\dfrac{1}{2}xy-\dfrac{3}{4}y^2\)
\(=x\left(x-\dfrac{3}{2}y\right)+\dfrac{1}{2}y\left(x-\dfrac{3}{2}y\right)\)
\(=\left(x+\dfrac{1}{2}y\right)\left(x-\dfrac{3}{2}y\right)\)